Faculty of Natural and Agricultural Sciences
Calendar 2007
Part 5: Qwaqwa Campus

Dean
Professor H.D. van Schalkwyk
9 Biology Building
Telephone: 051 401 2322
Fax: 051 401 3728
Email: dean.sci@mail.uovs.ac.za
Web address: http://www.uovs.ac.za/faculties/agrinat

Vice-Dean
Professor N.J.L. Heideman
10 Biology Building
Telephone: 051 401 9010
Fax: 051 401 3728
Email: heidemannj.sci@mail.uovs.ac.za

Qwaqwa Campus Programme Head
Professor A.S. Luyt
Science Building
Telephone: 058 718 5314
Fax: 058 718 5444
Email: luytas@qwa.uovs.ac.za

Faculty Manager
Ms C.H. Havemann
11 Biology Building
Telephone: 051 401 2490
Fax: 051 401 3728
Email: havemach.sci@mail.uovs.ac.za

Faculty Officer
Ms A.M.S. Liebenberg
142 George du Toit Administration Building
Telephone: 051 401 2664
Fax: 051 401 3558
Email: liebenam.rd@uovs.ac.za
Qwaqwa Campus Programme Officer
Mrs M.P. Leripa
Science Building
Telephone: 058 718 5354
Fax: 058 718 5444
Email: leripamp@qwa.uovs.ac.za
CONTENTS

How to use this Calendar .. 3
Academic Staff ... 5
Regulations and Information .. 8

B.Sc. (four-year curriculum) (4393) .. 13

Learning programmes

B.Sc. Biological Sciences, Biodiversity .. 14
Botany (4302) .. 15
Zoology (4303) .. 16

B.Sc. Mathematical Sciences ... 17
Mathematics and Applied Mathematics (4331) .. 18

B.Sc. Chemical and Physical Sciences ... 19
Physics and Chemistry (4341) ... 20
Physics (4342) .. 21
Chemistry (4343) .. 22
Chemistry/Physics and Biology (4388) ... 23
Materials Science (4347) .. 24
Chemistry and Management (4371) ... 25
Physics and Management (4373) .. 26

B.Sc. (IT) Information Technology ... 27
Management (4384) ... 28

Syllabi .. 29

Prerequisites (Annexure A) .. 53

Postgraduate Programmes
Honours degrees .. 55
Master of Science ... 58
Doctor's degrees ... 60

Postgraduate Syllabi ... 61

Rules for pipeline students of the University of the North, Qwaqwa Campus (UniQwa) .. 63

Syllabi .. 69
HOW TO USE THIS CALENDAR

The calendar of the Faculty contains information and regulations. It is the law book of the Faculty prescribing the rights and privileges of students and is therefore written in regulation format with regulation numbers.

It also contains useful information that will help students to plan their learning programmes optimally. It is normally not necessary to read this book from front to back, only use the parts applicable and what is needed.

The Faculty Calendar contains the following:

- The names of academic staff and departmental heads of the different departments can be found on page 4.
- The faculty regulations are very important and only comprise a few pages. It is absolutely essential that each student in the Faculty should be well acquainted with these regulations. If students are not clear on the interpretation thereof, the Programme Head should be consulted.
- The learning programmes under Reg. D7 lead to the degrees B.Sc. and B.Sc. (IT).
- Although a B.Sc. degree can be obtained after a study period of three years, most programmes are based on a study period of four years and it is therefore recommended that students plan in advance to continue with honours studies. It is thus important that students study the regulations for honours degrees in the Postgraduate Science Calendar at registration.
- The syllabi of modules start on page 28 of this calendar. Students should study the syllabi of the modules they have selected.
- The prerequisites for modules can be found in Annexure A on page 54.
- Rules and syllabi for pipeline students at the Qwaqwa Campus can be found from page 65.
ACADEMIC STAFF

DEAN
Professor H.D. van Schalkwyk

Vice Dean
Professor N.J.L. Heideman

Programme Head
Professor A.S. Luyt (Qwaqwa Campus)

(Departmental Heads / Departmental Chairpersons / Qwaqwa Subject Heads are indicated with an asterisk)

CHEMISTRY
Professors
Prof. S.S. Basson, Prof. E.V. Brandt, Prof. J.C. Swarts,
Prof. A. Roodt

Professor Extraordinary
Prof. H.K.L. Hundt

Associate Professors
Prof. W. Purcell, Prof. J.A. Steenkamp, Prof. C.R. Dennis,
Prof. J.H. van der Westhuizen

Senior Lecturers
Dr H.G. Visser, Dr J. Conradie, Dr B.I. Kamara

Lecturers
Mr J.A. Venter, Mr E.H.G. Langner, Mr K. von Eschwege,
Dr S.L. Bonnet

Subject Coordinators
Dr M. Versteeg, Ms R. Meintjes

Junior Lecturer
Mr T.N. Mtshali

Qwaqwa Campus
Professor
Prof. A.S. Luyt

Lecturers
*Mr S.P. Hlangothi, Mrs M.A. Mokoena, Ms B.G. Jacobs

Junior Lecturers
Ms D.G. Dikobe, Ms F.N. Stuurman, Mr R.G. Moji

COMPUTER SCIENCE AND INFORMATICS
Professors
*Prof. C.J. Tolmie, Prof. P.J. Blignaut, Prof. T. McDonald,
Prof. H.J. Messerschmidt

Senior Lecturer
Dr. L. de Wet

Lecturers
Mr D. du Plessis, Dr E. Nel, Ms E.H. Dednam, Mr A. van Biljon, Mr A.J. Burger

Junior Lecturer
Mr R.C. Fouché

Qwaqwa Campus
Junior Lecturers
*Mr B. Sebastian, Mr I. Mokhotla, Mr J. Eysele,
Mr M. Jonathan, Ms N.M. John, Mr F. Mudavandu,
Ms R. Wario

Vista Campus
Lecturer
Ms N. de Sousa

Junior Lecturers
Mr R. Shih, Mr S.D. Ramatloto

GEOGRAPHY
Professor
*Prof. P.J. Holmes

Associate Professor
Prof. N.J. Kotze

Senior Lecturers
Dr C.H. Barker, Dr G.E. Visser

Lecturers
Ms S. Vrahimis, Ms T.C. Mehlomakhulu

Junior Lecturer
Ms E. Kruger
Qwaqwa Campus
Associate Professor Prof. W.F. van Zyl
Senior Lecturer *Dr J.H.D. Claassen
Lecturers Mr A. Adjei, Mr H.C.J. Reinecke

Vista Campus
Lecturers Ms S. Vrahimis, Ms T.C. Mehlomakhulu

MATHEMATICS AND APPLIED MATHEMATICS
Professors *Prof. D.M. Murray, Prof. J.H. Meyer,
Prof. S.W. Schoombie, Prof. A.H.J.J. Cloot
Senior Lecturer Dr H.W. Bargenda
Lecturers Ms J.S. van Niekerk, Ms A.F. Kleynhans, Dr S. Dorfling,
Mr C. Venter

Qwaqwa Campus
Associate Professor Prof J. Schröder

Vista Campus
Associate Professor Prof. T. Acho

PHYSICS
Professor *Prof. H.C. Swart
Associate Professors Prof. W.D. Roos, Prof. P.J. Meintjes, Prof. J.J. Terblans
Senior Lecturers Dr M.J.H. Hoffman, Dr R.E. Kroon
Lecturer Dr O.M. Ntwaeaborwa

Qwaqwa Campus
Senior Lecturer *Dr B.F. Dejene
Lecturers Mr J.J. Dolo, Mr J.Z. Msomi, Mr B.M. Mothudi,
Mr R. Ocaya

PLANT SCIENCES
Plant Pathology
Professors *Prof. Z.A. Pretorius, Prof. W.J. Swart, Prof. N.W. McLaren
Lecturer Ms W-M. Kriel

Genetics
Professor Prof. J.J. Spies
Affiliated Associate Professor Prof. A. Kotzé
Senior Lecturer Dr C.D. Viljoen
Lecturers Dr B. Visser, Ms K. Ehlers, Ms A. Strydom

Botany
Professors Prof. J.U. Grobbelaar, Prof. L. Scott, Prof. A.J. van der Westhuizen, Prof. R.L. Verhoeven
Senior Lecturer Dr P.J. du Preez
Lecturers Dr L. Mohase, Dr A.M. Venter, Dr B. Visser
Lecturer Researcher Dr G.P. Potgieter

Plant Breeding
Professors Prof. M.T. Labuschagne, Prof. C.S. van Deventer
Affiliated Associate Professors Prof. R. Prins, Prof. J.B.J. van Rensburg
Senior Lecturer Dr L. Herselman
Lecturer Ms B.K. Mashope
Qwaqwa Campus

Professor
Vacant

Lecturers
*Mr R. Lentsoane, Ms M.J. Moloi

Junior Lecturer
Mr T.R. Pitso

ZOOLOGY AND ENTOMOLOGY

Professors
*Prof. J.G. van As, Prof. O.B. Kok, Prof. S. v.d. M. Louw, Prof. T.C. de K. van der Linde, Prof. L. Basson

Professors Extraordinary
Prof. G.L. Prinsloo, Prof. L.J. Fourie

Senior Lecturers
Dr M.C. van der Westhuizen, Dr L.L. van As

Lecturers
Ms E.M.S.P. van Dalen, Mr H.J.B. Butler

Junior Lecturers
Mr C.R. Haddad, Ms C. Jansen van Rensburg

Qwaqwa Campus

Senior Lecturer
*Dr M. Cunningham

Lecturer
Mr S. Mtshali

Junior Lecturers
Ms E.M.M. Makhetha, Ms H. Matete, Ms S.F.C. Nyaile, Mr J. van As
Bachelor's Degrees

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Minimum period of study</th>
<th>Abbreviation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baccalaureus Scientiae</td>
<td>3 years</td>
<td>B.Sc.</td>
<td>4300</td>
</tr>
<tr>
<td>Baccalaureus Scientiae</td>
<td>4 years</td>
<td>B.Sc.</td>
<td>4393</td>
</tr>
<tr>
<td>Baccalaureus Scientiae (Information Technology)</td>
<td>3 years</td>
<td>B.Sc. (IT)</td>
<td>4301</td>
</tr>
</tbody>
</table>

Occasional Studies

| Occasional Studies in Natural and Agricultural Sciences | 1 year | Occasional Studies | 4006 |

REGULATIONS

Reg. D1 - General regulations

The general regulations of the University are, with the necessary adjustments, applicable to this Faculty. These regulations can be found in the General Calendar of the University. It is the responsibility of the student to get acquainted with these regulations.

Reg. D2 - Entrance requirements

For admission to a programme in the Natural Sciences a student must comply with the following minimum requirements in the grade 12 examination. In cases of students not complying with these requirements, the Dean might consider admission in certain special circumstances.

D2.1 Faculty entrance requirements:

- Senior certificate with endorsement (Matriculation Exemption) or an equivalent qualification or a three-year qualification obtained from a tertiary institution.
- A minimum M-score of 28 based on the grade 12 subject symbols.

D2.1.1 Specific programme requirements:

B.Sc. (Information Technology)

To enrol for the B.Sc. (Information Technology) students should meet the following minimum requirements:

- Higher Grade E or Standard Grade C in grade 12 Mathematics. If the curriculum includes the module WTW114, the minimum mathematics symbol required is a D Higher Grade.
- Standard Grade E in grade 12 Physical Science or Higher Grade D or Standard Grade C in grade 12 Biology.

B.Sc. (three-year curriculum)

To enrol for the B.Sc. (three-year curriculum) students should meet the following minimum requirements:

- Higher Grade E or Standard Grade C in grade 12 Mathematics.
- Standard Grade E in grade 12 Physical Science or Higher Grade D or Standard Grade C in grade 12 Biology.
B.Sc. (four-year curriculum)
If a student does not meet the entrance requirements for the B.Sc. (three year curriculum), the student can be allowed into the B.Sc. (four-year curriculum) if the following minimum requirements are met:
- A minimum M-score of 24 based on the grade 12 subject symbols.
- Standard Grade F in grade 12 Mathematics.
- Standard Grade F in grade 12 Physical Science or Standard Grade F in grade 12 Biology.

Progress requirements:
To progress to the second study year of the four-year curriculum, all the development modules (ALC104, CGS108, WTV154, WTV164 and BRS111) plus 32 mainstream credits (CEM104 and CEM194) should be passed.
To progress to the third study year of the four-year curriculum, the development module ALC204 must be passed.

If these requirements are not met the Dean can consider admission in cases which are exceptionally meritorious.

D2.1.2 Occasional Studies in Natural and Agricultural Sciences, requirements
In order to enrol for Occasional Studies in Natural and Agricultural Sciences the following minimum requirements should be met:
- Senior Certificate or an equivalent qualification or a three year qualification obtained from a tertiary institution.
- A minimum M-score of 18 based on the grade 12 subject symbols.
- Standard Grade F in grade 12 Mathematics.
- Standard Grade F in Physical Science or standard grade F in grade 12 Biology.

Curriculum of the Occasional Studies programme (4006)

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td></td>
<td>ALC104</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>CGS108</td>
<td>WTV164*</td>
</tr>
<tr>
<td></td>
<td>CHE104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHE194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WTV154*</td>
<td></td>
</tr>
</tbody>
</table>

* Equivalent to WTV154 and WTV164.

In order to continue with the B.Sc. (four-year curriculum) second year of study all the development modules (ALC104, CGS108, WTV154, WTV164 and BRS111) plus 32 mainstream credits (CHE104 and CHE194) should be passed.

Students have to apply the symbol score table below to their six best grade 12 subject results to obtain their M-score and to see which of the above-mentioned requirements they meet.

<table>
<thead>
<tr>
<th>SYMBOL OBTAINED IN GRADE 12</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL ACHIEVED</td>
<td>Higher Grade</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Standard Grade</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- 9 -
D2.2 Subject requirements:
• For admission to modules WTW114 and WTW124 the minimum requirement is Mathematics Higher Grade D. See Reg. A2 (e). WTW164 Precalculus also gives admission to WTW114.
• Students who passed Computer Studies Higher Grade in grade 12 or any other substantial programming course and can show proof thereof can be exempted from RIS114 or RIS134 if a promoting test at the beginning of the semester is passed with at least 65%. The test will be of equivalent standard of the RIS114/RIS134 examination.

D2.3 Students in other faculties:
• Students in other faculties who register for subjects in the Faculty of Natural and Agricultural Sciences must comply with the minimum regulation requirements, as set out in Reg. D2.1.

Reg. D3 - The selection of a learning programme

D3.1 The meaning of a module code
A learning programme consists of compulsory modules as well as optional modules. A module is indicated with the code ABCxyz that means the following:

ABC Characters indicating the name of the module
x A digit indicating the year level.
y An odd digit for the first semester and an even digit for the second semester.
z This digit must be multiplied by 4 to indicate the number of credits.

D3.2 Credit values of modules from other faculties:
Modules given in faculties other than Natural and Agricultural Sciences do not necessarily use the above-mentioned notation. If the credits differ, the number of credits for such a module is indicated in brackets after the module code.

D3.3 Procedure for the selection of a learning programme:
• Select a learning programme under Reg. D7.
• Verify that all the elected modules are allowed on the class and examination timetable.
• Verify that the prerequisites prescribed for every course are met (See Reg. D4).
• Verify that the elected learning programme complies to the requirements of the qualification (See Reg. D5).

D3.4 FSK114 or FSK134 as elective
• Students who took Higher Grade Mathematics and Higher Grade Science in grade 12 and achieved an A or a B symbol and who plan to continue with Physics in their second year of study, are advised to take FSK114.
• Students who plan to study first year Physics only, are advised to study FSK134.

D3.5 WTW114 or WTW134 as elective
• Students who took Higher Grade Mathematics in grade 12 and achieved an A or a B symbol and students who plan to continue with Mathematics in the second year of study, are advised to take WTW114.
• WTW134: It is strongly recommended that a student who plans to study WTW134 should at least have obtained a C-symbol in grade 12 Standard Grade Mathematics.

Reg. D4 - Prerequisites
Before a module can be taken, the prerequisites of the module have to be complied with, unless special permission is obtained from the Head/Chairperson of the relevant department. There are four possibilities:
• No prerequisite is required for the module and the module can be taken at all times.
• The minimum (Min.) prerequisite applies. The requirement is a semester/year mark or an examination mark of 40% in the relevant module. It is indicated as, for example, Min. (WTW114), if WTW114 is the relevant module.
• A full prerequisite applies. The requirement is a pass in the relevant module. It is indicated as WTW114, if WTW114 is the relevant module.
• A co-requisite is required. If the modules are taken for the first time, the module prescribed as co-requisite must be taken simultaneously with the relevant module.

Reg. D5 - Programme requirements for the degrees B.Sc. and B.Sc.(IT):

D5.1 General requirements
• Students must comply with the requirements of the specific programme. (For programmes, see Reg. D7.)
• If indicated in the programme, the foundation courses BRS111 and RIS121 are compulsory and must be passed. The foundation courses represent the mastering of basic skills and must be passed before the degree can be awarded. Students who passed Computer Studies in grade 12 with a D (HG) or C (SG) are exempted from BRS111.
• In exceptional cases of students not complying with the minimum programme and/or credit requirements, the Dean might, according to the nature of the programme, approve a deviation from the above requirements.

D5.2 Specific requirements for B.Sc., B.Sc. (IT) and the B.Sc. (four-year curriculum)
The degree cannot be conferred if the minimum credit requirements are not met as follows:
• A total of at least 392 credits must be obtained over three years (384 degree credits plus BRS111 and RIS121).
• At first year level, a minimum of 120 credits must be obtained.
• At both second and third year levels a minimum of 96 credits must be obtained.
• At least 64 credits must be obtained from one discipline (subject) at third year level, unless the specific programme requirement is different. Please note that all modules in a given discipline do not necessarily share the same code structure.
• It will be expected from B.Sc. (IT) students to do at least one student assistantship in the Department of Computer Science and Informatics in the third year of study.
• B.Sc. (four-year curriculum) - A total of 480 (496) credits must be obtained over a period of four years. Of these a minimum of 384 degree credits must be obtained. At least 96 credits must be obtained on both second and third year level and 64 credits on third year level should be in the same discipline.

Recommendations:
• If the student wishes to complete the degree with two majors, at least 48 credits must be obtained for each subject at second year level and 64 credits at third year level.
• If the student wishes to take three full second year subjects, at least 48 credits must be obtained for each subject on second year level. The total of these second year credits will then at least be 144 credits. The advantage of this option is that the student will have a wider choice of majors in the third year.
• Because the outcomes of most programmes are based on a study period of four years, students are advised to plan to continue with honours study after completing the B.Sc. degree. It is therefore important to plan undergraduate programmes accordingly.
Reg. D6 - Examinations

For the duration of the examinations, see syllabi.
For pass requirements and other regulations concerning examinations, consult the general regulations.

Reg. D7 - Undergraduate programmes

The following undergraduate learning programmes are presented in the Natural and Agricultural Sciences: see p. 13.
B.Sc. (four-year curriculum) (4393)

The B.Sc. (four-year curriculum) is taken over a minimum of four years and is aimed to improve the successful pass rate of the B.Sc. degree. The modules in the first year of the programme are all compulsory. From the second year electives can be made. Modules with an asterisk are year modules.

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td></td>
<td>ALC104*</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>CGS108*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEM104*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CEM194*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WTV154</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTV164</td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALC204*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WTW114 or WTW134</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 credits from:</td>
<td>48 credits from:</td>
</tr>
<tr>
<td></td>
<td>BLG114</td>
<td>BLG124, BLG144</td>
</tr>
<tr>
<td></td>
<td>FSK114 or FSK134</td>
<td>FSK124 or FSK144</td>
</tr>
<tr>
<td></td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>RIS134</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>STK114</td>
<td>STK124</td>
</tr>
<tr>
<td></td>
<td>WTW124 or WTW144</td>
<td>WTV124 or WTV144</td>
</tr>
</tbody>
</table>

NB After successful completion of all the modules of the first and second year of the programme, the student changes to the learning programme of his/her choice

3 Follow mainstream second year of learning plan of choice as set out in the Faculty Calendar

4 Follow mainstream third year of learning plan of choice as set out in the Faculty Calendar
Biodiversity describes "Life on Earth". It encompasses the total diversity of organisms and their interactions with each other and their environment. These interactions can be at physical, physiological or genetic levels. The evaluation of biodiversity starts with the individual, progresses to populations and species etc. Biodiversity therefore reflects the sum total of life.

Possible learning programmes in Biodiversity are:

LP1: B.Sc. Botany (4302)
LP2: B.Sc. Zoology (4303)

Composition of a learning programme

- A learning programme consists of compulsory as well as optional modules. A module is indicated by the code ABCxyz that means the following:
 - ABC: Characters indicating the name of the module
 - x: A digit indicating the year level.
 - y: An odd digit for the first semester and even digit for the second semester.
 - z: This digit must be multiplied by 4 to indicate the number of credits.

- Modules with a total credit value of at least 120 must be passed at first year level.
- Modules with a total credit value of at least 96, but preferably 128, must be passed at both the second and third year levels.
- For a B.Sc. degree modules with a total weight of at least 392 must be passed (384 degree credits plus BRS111 and RIS121).
- A '+' between modules indicates that all the modules must be taken.
- A comma between modules indicates the modules may be taken independently. The word 'or' between modules indicates that only one of the modules may be taken.
- Prerequisites of individual modules must always be adhered to.
- Additional modules may be taken as long as the timetable allows it.
Learning programme 1: B.Sc. Botany (4302)

Completion of this study provides the student with a fundamental knowledge of botany, including ecology of terrestrial and aquatic systems. The student can be employed as laboratory or research assistant/teacher/environmental consultant/conservationist in the environmental or agricultural sectors, education and medical institutes. After completion of the third year a postgraduate study in Botany up to Ph.D. level can be followed.

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td></td>
<td>- Biology</td>
<td>- Botany</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>- PLK212+PLK214</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td>PLK224+PLK262</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>PLK314+PLK334</td>
</tr>
<tr>
<td></td>
<td>- Geosciences</td>
<td>PLK324+PLK344</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>PLK344</td>
</tr>
<tr>
<td></td>
<td>- Psychology</td>
<td>DRK314, DRK334</td>
</tr>
<tr>
<td></td>
<td>- Statistics</td>
<td>ZOO324, ZOO344</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td>GEO314 (GEO334)</td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td>GEO324 (GIS324)</td>
</tr>
<tr>
<td></td>
<td>Optional:</td>
<td>Optional:</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>- FSK124 or FSK144</td>
</tr>
<tr>
<td></td>
<td>- Geosciences</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>- Psychology</td>
<td>STK124</td>
</tr>
<tr>
<td></td>
<td>- Statistics</td>
<td>WTW124 or WTW144</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courses in brackets are not presented at the Qwaqwa Campus.
Learning programme 2: B.Sc. Zoology (4303)

This learning programme is designed for students interested in Biology with Zoology as focus. After completion of the third year a student can proceed with postgraduate studies up to the Ph.D. level.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Biology</td>
<td>BLG114</td>
<td>BLG124+BKG144</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM104</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td>WTW114 or WTW134</td>
<td>FSK124 or FSK144</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>FSK114 or FSK134</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td>BR5111</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>Optional:</td>
<td>GWS114</td>
<td>STK124</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>RIS134</td>
<td>WTW124, WTW144</td>
</tr>
<tr>
<td></td>
<td>- Geosciences</td>
<td>PSY108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>STK114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Psychology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>DRK252+DRK214</td>
<td>DRK262+DRK224</td>
</tr>
<tr>
<td></td>
<td>- Zoology</td>
<td>CEM322, CEM214</td>
<td>CEM242, CEM224</td>
</tr>
<tr>
<td></td>
<td>Sufficient modules to obtain at least 48 credits (preferably 80) from:</td>
<td>PLK212, PLK214</td>
<td>PLK224, PLK262</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM314, CEM334</td>
<td>ZOO324+ZOO344</td>
</tr>
<tr>
<td></td>
<td>- Botany</td>
<td>PLK314, PLK334</td>
<td>CEM342, CEM344</td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>DRK314+DRK334</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Zoology</td>
<td>CEM314, CEM334</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sufficient modules to obtain at least 32 credits (preferably 64) from:</td>
<td>PLK314, PLK334</td>
<td></td>
</tr>
</tbody>
</table>
This programme is designed for students with a strong mathematical inclination who would like to specialise in a mathematical discipline. The various mathematical subjects can be combined with Computer Information Systems, Physics, Chemistry or various Biological disciplines.

Possible learning programmes in Mathematical Sciences are:

LP1: B.Sc. Mathematics and Applied Mathematics (4331)

Composition of a learning programme

- A learning programme consists of compulsory as well as optional modules. A module is indicated by the code ABCxyz that means the following:
 - ABC: Characters indicating the name of the module
 - x: A digit indicating the year level.
 - y: An odd digit for the first semester and an even digit for the second semester.
 - z: This digit must be multiplied by 4 to indicate the number of credits.

- Modules to obtain at least 120 credits must be passed on the first year level.
- Modules to obtain at least 96, but preferably 128, credits must be passed on both the second and third year levels.
- For a B.Sc. degree modules with a total weight of at least 392 must be passed (384 degree credits plus BRS111 and RIS121).
- A ‘+’ between modules means that all the modules must be taken.
- A comma between modules means that the modules may be taken independently.
- The word ‘or’ between modules means that only one of the modules may be taken.
- Prerequisites of individual modules must always be adhered to.
- Mathematics in grade 12 with Higher Grade D is expected for admission to the module WTW114.
- Additional modules may be taken provided there are no timetable clashes.
Learning programme 1: B.Sc. Mathematics and Applied Mathematics (4331)

This learning programme is recommended for students who wish to develop a sound mathematical base for a career as scientist, mathematical analyst, financial mathematician, lecturer or teacher. Students can broaden their scientific background by combining their mathematical subjects with Physics, Chemistry or the environmental sciences or can place a higher emphasis on Mathematics modules.

For admission to this Learning Programme grade 12 Mathematics HG D will be required.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Mathematics</td>
<td>WTW114</td>
<td>WTW124</td>
</tr>
<tr>
<td></td>
<td>- Computer Literacy</td>
<td>BRS111</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At least one module per semester from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM104</td>
<td>FSK114</td>
</tr>
<tr>
<td></td>
<td>- CEM194</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td></td>
<td>FSK124</td>
</tr>
<tr>
<td></td>
<td>Enough modules to earn at least 120 credits on first year level. The following is possible among others:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional modules can be taken in the first and second semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Biology</td>
<td>BLG114</td>
<td>BLG124 or BLG144</td>
</tr>
<tr>
<td></td>
<td>- Geosciences</td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>- Business Management</td>
<td>OBS134</td>
<td>OBS144</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>RIS134</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>2 Compulsory</td>
<td>WTW214</td>
<td>WTW224+WTW262</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applied Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Compulsory</td>
<td>WTW314, WTW334</td>
<td>WTW324, WTW344</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applied Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enough other modules to earn at least 96 credits (preferably 128) on second year level. The following is possible among others:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM232, CEM214</td>
<td>CEM242, CEM224</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>FSK232, FSK214</td>
<td>FSK242, FSK224</td>
</tr>
<tr>
<td></td>
<td>- Business Management</td>
<td>OBS234</td>
<td>OBS244</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>RIS216 or RIS236</td>
<td>RIS222, RIS224</td>
</tr>
<tr>
<td></td>
<td>Enough other modules to earn at least 96 credits (preferably 128) on third year level. The following is possible among others:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mathematics and Applied Mathematics</td>
<td>WTW314, WTW334</td>
<td>CEM314, CEM334</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>FSK314, FSK332, FSK352</td>
<td>FSK324, FSK342, FSK362</td>
</tr>
<tr>
<td></td>
<td>- Business Management</td>
<td>OBS314</td>
<td>OBS364</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>RIS314, RIS334</td>
<td>RIS324, RIS344</td>
</tr>
</tbody>
</table>
These learning programmes are intended for students who wish to graduate with Physics and/or Chemistry and possible combinations with other disciplines.

The following are possible learning programmes in Chemical and Physical Sciences:

LP1: B.Sc. Physics and Chemistry (4341)
LP2: B.Sc. Physics (4342)
LP3: B.Sc. Chemistry (4343)
LP4: B.Sc. Chemistry/Physics and Biology (4388)
LP5: B.Sc. Materials Science (4347)
LP6: B.Sc. Chemistry and Management (4371)
LP7: B.Sc. Physics and Management (4373)

Composition of a learning programme

- A learning programme consists of compulsory as well as optional modules. A module is indicated by the code ABCxyz that means the following:
 - ABC: Characters indicating the name of the module.
 - x: A digit indicating the year level.
 - y: An odd digit for the first semester and an even digit for the second semester.
 - z: This digit must be multiplied by 4 to indicate the number of credits.

- Modules to obtain at least 120 credits must be passed on the first year level.
- For a B.Sc. degree modules with a total weight of at least 392 must be passed (384 degree credits plus BRS111 and RIS121).
- A '+' between modules means that all the modules must be taken.
- A comma between modules means that the modules may be taken independently.
- The word 'or' between modules means that only one of the modules may be taken.
- Prerequisites of individual modules must always be adhered to.
- Additional modules may be taken provided there are no timetable clashes.
Learning programme 1: B.Sc. Physics and Chemistry (4341)

This learning programme is aimed at students who are interested in a career in the physical and chemical sciences. This includes careers in industry, research laboratories and teaching at all levels (universities, schools, technicons and technical colleges). This combination of courses is well suited to careers in any manufacturing industry (food, mining, agriculture, and metallurgy) or engineering firms concerned with mechanical, civil, electronic and/or chemical activities. Careers in design, energy production, computer sciences, advanced instrumentation development and atmospheric sciences are also possible. After these studies are completed, postgraduate studies in physics or chemistry can be continued provided that the necessary prerequisites are met.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Physics</td>
<td>FSK114</td>
<td>FSK124</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td>WTW114 or WTW134</td>
<td>WTW124 or WTW144</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM104</td>
<td>CEM194</td>
</tr>
<tr>
<td></td>
<td>- Computer Literacy</td>
<td>BRS111</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td>RIS134</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>One module per semester from:</td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Geography and/or Geology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>FSK214+FSK232</td>
<td>FSK224+FSK242</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>CEM214+CEM232</td>
<td>CEM224+CEM242</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>RIS236</td>
<td>RIS222, RIS224</td>
</tr>
<tr>
<td></td>
<td>Enough modules to obtain 32 credits from:</td>
<td>WTW214</td>
<td>WTW224, WTW262</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mathematics and Applied Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>CEM314+CEM334</td>
<td>CEM324+CEM344</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>FSK314+FSK332+FSK352</td>
<td>FSK324+FSK342+FSK362</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning programme 2: B.Sc. Physics (4342)

This learning programme makes provision for the student who is interested in physics and who wishes to choose modules with it that no other learning programmes provide for. Postgraduate studies can be pursued in physics or the other chosen discipline provided that the necessary prerequisites are met. Together with the career possibilities mentioned under learning programme 1, combined career directions, for example combinations of physics and law (e.g. patent lawyer) or physics and economics directions can also be considered.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physics</td>
<td>FSK114</td>
<td>FSK124</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>WTW114</td>
<td>WTW124</td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Computer Usage</td>
<td>RIS121</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>Two modules per semester from:</td>
<td>CEM104, CEM194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td>RIS134, RIS144</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td>2</td>
<td>Physics</td>
<td>FSK214+FSK232</td>
<td>FSK224+FSK242</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applied Mathematics</td>
<td>WTW214, WTW262</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CEM232, CEM214, CEM242, CEM224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td>RIS236, RIS224, RIS322, RIS224</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Physics</td>
<td>FSK314+FSK332+FSK352</td>
<td>FSK324+FSK342+FSK362</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applied Mathematics</td>
<td>WTW314, WTW334, WTW344</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CEM314, CEM334, CEM324+CEM344</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td>RIS314, RIS334, RIS324+RIS344</td>
<td></td>
</tr>
</tbody>
</table>
Learning programme 3: B.Sc. Chemistry (4343)

This learning programme makes provision for the student who is interested in chemistry and who wishes to choose modules with it that no other learning programmes provide for. Postgraduate studies can be pursued in chemistry or the other chosen discipline provided that the necessary prerequisites are met. In addition to the career possibilities mentioned in learning programme 1, careers in chemistry which include natural products, structural elucidations, polymer- and/or new material development, catalysis, speed of reactions, analytical chemistry and electrochemical energy transformations may also be considered. Combined career directions, for example combinations of chemistry and law (e.g. patent attorney) or chemistry and economic directions can also be considered.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Chemistry</td>
<td>CEM104</td>
<td>WTW124 or WTW144</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td>WTW114 or WTW134</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>- Computer Literacy</td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two modules per semester from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>RIS134</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>- Geography</td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>FSK114</td>
<td>FSK124</td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>CEM214+CEM232</td>
<td>CEM224+CEM242</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>WTW214</td>
<td>WTW224 WTW262</td>
</tr>
<tr>
<td></td>
<td>Enough modules to obtain 48 (preferably 80) credits from:</td>
<td>RIS236</td>
<td>RIS222 RIS224</td>
</tr>
<tr>
<td></td>
<td>- Mathematics and Applied Mathematics</td>
<td>FSK232+FSK214</td>
<td>FSK242+FSK224</td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>CEM314+CEM334</td>
<td>CEM324+CEM344</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>WTW314, WTW334</td>
<td>WTW324, WTW344</td>
</tr>
<tr>
<td></td>
<td>Enough modules to obtain 32 (preferably 64) credits from:</td>
<td>RIS314, RIS334</td>
<td>RIS324 RIS344</td>
</tr>
<tr>
<td></td>
<td>- Mathematics and Applied Mathematics</td>
<td>FSK314, FSK332, FSK352</td>
<td>FSK324, FSK342, FSK362</td>
</tr>
</tbody>
</table>
Learning programme 4: B.Sc. Chemistry/Physics and Biology (4388)

This learning programme makes provision for a student who is interested in chemistry and the biological sciences where the foundation of biological systems and chemistry is involved. It includes careers in any manufacturing industry as well as in fields such as medicine, the pharmaceutical industry, agriculture (including livestock, crops, pest control, soil and water), forestry, environmental, waste and pollution management and various careers in the marine environment. Post-graduate studies may be continued in chemistry or any of the biological sciences if the necessary prerequisites are met.

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM104</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>CEM194</td>
</tr>
<tr>
<td></td>
<td>- Biology</td>
<td>FSK114 or FSK134</td>
</tr>
<tr>
<td></td>
<td>- Mathematics</td>
<td>BLG114</td>
</tr>
<tr>
<td></td>
<td>- Computer Literacy</td>
<td>WTW114 or WTW134</td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td>BRS111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK124 or FSK144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLG124 or BLG144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTW124 or WTW144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIS121</td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM214+CEM232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEM224+CEM242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK214, FSK232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK224, FSK242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLK212, PLK214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLK224, PLK262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRK222, DRK224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRK252, DRK234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK314, FSK332, FSK352</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK324, FSK342, FSK362</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLK314, PLK334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLK324, PLK344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRK314, DRK334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZOO324, ZOO344</td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM314+CEM334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEM324+CEM344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK314, FSK332, FSK352</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FSK324, FSK342, FSK362</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLK314, PLK334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLK324, PLK344</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRK314, DRK334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZOO324, ZOO344</td>
</tr>
</tbody>
</table>
Learning programme 5: B.Sc. Materials Science (4347)

This learning programme is recommended for students who wish to increase their marketability for a career in materials science or in material characterisation. Knowledge and development of materials is very important for technology. For example, semiconductor materials form the basis of modern electronics and cheap steel or substitutes are necessary for the economic production of cars. The undergraduate studies form the basis for the specialisation in materials science and material characterisation in the honours year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CEM104</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CEM194</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIS134</td>
<td>WTW124</td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td>WTW114</td>
<td>FSK114</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>FSK124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>CEM111</td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>FSK121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Computer Usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>CEM214+CEM232</td>
<td>CEM224+CEM242</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>FSK214+FSK232</td>
<td>FSK224+FSK242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTW214</td>
<td>WTW224, WTW262</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>EKN108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>RIS236</td>
<td>RIS222, RIS224</td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>FSK314+FSK332+FSK352</td>
<td>FSK324+FSK342+FSK362</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td></td>
<td>FSK324+FSK342+FSK362</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WTW314, WTW334</td>
<td>WTW324, WTW344</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>OBS234, OBS314</td>
<td>OBS144, OBS324</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td>CEM314, CEM334</td>
<td>CEM324, CEM344</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>RIS314, RIS334</td>
<td>RIS324, RIS344</td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td>EKN214, EKN314</td>
<td>EKN224, EKN324</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning programme 6: B.Sc. Chemistry and Management (4371)

The focus of this learning programme is management training for a cost unit (fixed financial budget/allocation) at a B.Sc. exit level or a profit unit (profit/loss of a viable business) at an honours exit level. Further studies could lead to either an M.Sc. or an MBA. degree. This learning programme is recommended for students who wish to improve their marketability for a career in marketing management, project/general management, corporate/strategic planning, chemical sector analysis or entrepreneurship in a chemical direction. Instead of the introductory modules in all of management, economics, accounting and psychology (as at the Bloemfontein Campus), the emphasis is on business management with more in-depth grounding in accounting and either economics or psychology.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemistry</td>
<td>CEM104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CEM194</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>WTW134</td>
<td>WTW144</td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Computer Usage</td>
<td>RiS121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One of the following subjects (both semesters):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology</td>
<td>BLG114</td>
<td>BLG124 or BLG144</td>
</tr>
<tr>
<td></td>
<td>Computer Information Systems</td>
<td>RiS134</td>
<td>RiS144</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>FSK114</td>
<td>FSK124</td>
</tr>
<tr>
<td></td>
<td>One of the following subjects (year modules):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Psychology</td>
<td>CIP108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economics</td>
<td>EKN108</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>ACC108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accounting</td>
<td></td>
<td>OBC134</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td>OBC144</td>
<td>CEM244+CEM242</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CEM214+CEM232</td>
<td>CEM244+CEM242</td>
</tr>
<tr>
<td></td>
<td>One of the following subjects (both semesters):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>PLK214</td>
<td>PLK224</td>
</tr>
<tr>
<td></td>
<td>Mathematics and Applied Mathematics</td>
<td>WTW236</td>
<td>WTW244</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>FSK214</td>
<td>FSK224</td>
</tr>
<tr>
<td></td>
<td>Zoology</td>
<td>DRK214</td>
<td>DRK224</td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>CEM314+CEM334</td>
<td>CEM324+CEM344</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>OBS314+OBS334</td>
<td>OBS324+OBS344</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td>OBS314+OBS324</td>
<td>OBS324+OBS324</td>
</tr>
</tbody>
</table>
Learning programme 7: B.Sc. Physics and Management (4373)

The focus of this learning programme is management training for a cost unit (fixed financial budget/allocation) at a B.Sc. exit level or a profit unit (profit/loss of a viable business) at an honours exit level. Further studies could lead to an M.Sc. or an MBA degree. This learning programme is recommended for students who wish to increase their marketability for a career in marketing management, project/general management, corporate/strategic planning, physical sector analysis, or entrepreneurship in a physics direction. Instead of the introductory modules in all of management, economics, accounting and psychology (as at the Bloemfontein Campus), the emphasis is on business management with more in-depth grounding in accounting and either economics or psychology.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Mathematics</td>
<td>WTW134</td>
<td>WTW144</td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td>FSK114</td>
<td>FSK124</td>
</tr>
<tr>
<td></td>
<td>- Computer Literacy</td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Advanced Computer Usage</td>
<td></td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>One of the following subjects (both semesters):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Computer Information Systems</td>
<td>RIS134</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>- Geography</td>
<td>GWS114</td>
<td>GEO124</td>
</tr>
<tr>
<td></td>
<td>One of the following subjects (year modules):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Industrial psychology</td>
<td>CIP108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Economics</td>
<td>EKN108</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>ACC108</td>
<td>OBC144</td>
</tr>
<tr>
<td></td>
<td>- Accounting</td>
<td>FSK214+FSK232</td>
<td>FSK224+FSK242</td>
</tr>
<tr>
<td></td>
<td>- Business Management</td>
<td>OBC134</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One of the following subjects (both semesters):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mathematics and Applied Mathematics</td>
<td>WTW236</td>
<td>WTW244</td>
</tr>
<tr>
<td></td>
<td>- Chemistry</td>
<td>CEM214</td>
<td>CEM224</td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>OBS314+OBS234</td>
<td>OBS334+OBS244</td>
</tr>
<tr>
<td></td>
<td>- Business Management</td>
<td>FSK314+FSK332+FSK352</td>
<td>FSK324+FSK342+FSK362</td>
</tr>
</tbody>
</table>
This programme delivers highly trained information technologists with technical skills in programming, system design and analysis as well as database and network management. The student will be able to render overall computer support in the industry.

Learning programme in Information Technology is:

LP1: B.Sc. Management (4384)

Composition of a learning programme

- A learning programme consists of compulsory as well optional modules. A module is indicated by the code ABCxyz that means the following:
 - ABC: Characters indicating the name of the module.
 - x: A digit indicating the year level.
 - y: An odd digit for the first semester and even digit for second semester.
 - z: This digit should be multiplied by four to indicate the number of credits.

- Modules with a credit value of at least 120 must be passed on first year level.
- Modules with a credit value of at least 96, but preferably 128, must be passed on both second and third year levels.
- For a B.Sc. degree modules with a total weight of at least 392 must be passed (384 degree credits plus BRS111 and RIS121).
- A ‘+’ between modules indicate that all the modules must be presented.
- A comma between modules indicates that the modules may be presented independently. The word ‘or’ between modules indicates that only one of the modules may be presented.
- Prerequisites of individual modules must always be adhered to.
- To enrol for the B.Sc. (Information Technology) students should meet the following minimum requirements:
 - Higher grade E or standard grade C in grade 12 Mathematics. If the curriculum includes the modules WTW114, the minimum mathematics symbol required is a D (higher grade).
 - Standard grade E in grade 12 Physical Science or higher grade D or standard grade C in grade 12 Biology.
- Additional modules may be taken only if it does not cause timetable clashes.
Learning programme 1: B.Sc. (IT): Management (4384)

The science and commercial sectors often overlap and it is important that individuals in these two sectors understand and speak one another’s language. This learning programme provides students with the opportunity to learn and to experience the best of both worlds. It is directed towards preparing a student for a career as IT manager in both the public and private sectors.

For admission to this Learning Programme grade 12 Mathematics HG E or SG C is required.

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computer Information Systems</td>
<td>RIS134</td>
<td>RIS144</td>
</tr>
<tr>
<td></td>
<td>Industrial Psychology</td>
<td>CIP108*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>BRS111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Computer Usage</td>
<td></td>
<td>RIS121</td>
</tr>
<tr>
<td></td>
<td>One module per semester from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td>STK114</td>
<td>STK124</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>WTW114 or WTW134</td>
<td>WTW124 or WTW144</td>
</tr>
<tr>
<td></td>
<td>One module per semester from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology</td>
<td>BLG114</td>
<td>BLG124 or BLG144</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CEM104</td>
<td>CEM194</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>FSK114 or FSK134</td>
<td>FSK124 or FSK144</td>
</tr>
<tr>
<td>2</td>
<td>Computer Information Systems</td>
<td>RIS236</td>
<td>RIS222+RIS224</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td>OBC134</td>
<td>OBC144</td>
</tr>
<tr>
<td></td>
<td>Accounting</td>
<td>ACC108*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>One module per semester from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>CEM232, CEM214</td>
<td>CEM242, CEM224</td>
</tr>
<tr>
<td></td>
<td>Zoology</td>
<td>DRK252, DRK214</td>
<td>DRK262, DRK224</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>FSK232+FSK214</td>
<td>FSK242+FSK224</td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>PLK212, PLK214</td>
<td>PLK224, PLK262</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>WTW214, WTW236, WTW252</td>
<td>WTW224, WTW244, WTW262, WTW282</td>
</tr>
<tr>
<td></td>
<td>One module per semester from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>WTW214, WTW236, WTW252</td>
<td>WTW224, WTW244, WTW262, WTW282</td>
</tr>
<tr>
<td>3</td>
<td>Computer Information Systems</td>
<td>RIS314+RIS334</td>
<td>RIS324+RIS344</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td>OBS314+OBS234</td>
<td>OBS324+OBS244</td>
</tr>
</tbody>
</table>

Previous module(s) New module
ORG114 + HUM122 + OBS122 CIP108 (year module)
REK112 + BRF121 ACC108 (year module)
IBM314 OBC134
SYLLABI

BLG114 (16 credits) - Molecular and Cell Biology
(Department of Microbial, Biochemical and Food Biotechnology)
Three lectures and three hours practical per week in the first semester.

One examination paper of three hours.

After successful completion of the module, the learner should be able to:
(a) Explain the current theories w.r.t. the origins of life and how it unfolds in nature.
(b) Explain the structures of living cells and how complex molecules in cells interact with each other to make the flow of energy, material and information possible in the cell.
(c) Explain the transfer of genetic information and how it influences the patterns of inheritance between generations of organisms.
(d) Understand the fundamental principles regarding the biology of the different levels of organization in living organisms from viruses to eukaryotic micro-organisms.

[This module has a credit value of 16 credits. 14 credits are for subject specific outcomes and 2 credits for critical (generic) outcomes with respect to language skills in oral and written reports relating to the recording of experimental results, experimental and laboratory skills and group work relating to problem solving.]

BLG124 (16 credits) - Plant Biology
(Department of Plant Sciences)
Three lectures and one three-hour practical per week.

One examination paper of three hours.

Development and reproduction of flowering plants, plant multiplication, plant taxonomic principles, biodiversity, ecology, economic importance of plants.

After the successful completion of this module the student should be able to understand and explain the following:
(a) The basic principles regarding the biology of plants, their development and reproduction (plant manipulation).
(b) The basic principles regarding plant identification and classification (taxonomy).
(c) Biodiversity (conservation biology).
(d) The interactions between plants, environment and man (ecology).
(e) The economic importance of plants (toxic, medicinal, industrial and food plants, plant pathology, plant molecular biology, plant biotechnology and plant breeding).

BLG144 (16 credits) - Animal Biology
(Department of Zoology and Entomology)
Three lectures and one three-hour practical per week throughout the second semester.

Evaluation: Assignments, class tests, two module tests, and an examination paper of three hours.
Invertebrata: aspects of classification and bio-ecology; insect morphology, anatomy and metamorphosis; aspects of applied entomology, i.e. insect-plant relationships; medical, veterinary and forensic entomology; insect physiology and pest control. Mammal zoogeography, evolution and etho-ecology.

After successful completion of the module, the student should be able to:
(a) Explain and describe the basic classification of the invertebrates, including the insects.
(b) Explain the importance of insects in practice.
(c) Describe the principles of biogeography, the basic driving forces of evolution, and the ecological influences on behaviour.

BRS111 (4 credits) - Computer literacy
(Department of Computer Science and Informatics)
One lecture per week and one three-hour practical per week during the first semester.
After the successful completion of the module the student should be able to:
(a) Have a basic knowledge of the principles of microcomputers, and microcomputer hardware,
(b) Have knowledge of the basic commands of an operating system and must be able the apply it,
(c) Have knowledge of the basic commands of a general word processing program and must be able the apply it,
(d) Have knowledge of the basic commands of a spreadsheet program and must be able the apply it,
(e) Have knowledge of the basic commands of the Internet and must be able the apply it.

Chemistry - General learning outcomes
Development and accumulation of knowledge on the selected topics by means of lectures, textbooks, resource-based learning, utilisation of a reference library, computer-assisted learning and assignments.
Development of skills in a practical field of application through lectures, reports, video and computer-assisted education and experimental procedures under typical laboratory conditions.
Development of independent reasoning and thinking skills by means of tutorials, creative problem solving and group seminars.
Personality development by interactive participation in teaching, tutorial sessions, group discussions and self-evaluation.
Planning and managing of the learning process by interactive lecturer/student discussions and independent study.

CEM104 - Inorganic and Analytical Chemistry (Extended B.Sc.)
CHE104 - Inorganic and Analytical Chemistry (Distance learning)
This module has a value or 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
CEM104: Two lectures and one tutorial per week, one three-hour practical session per week throughout the year.
CHE104: Weekly contact sessions with facilitation at different sub region centres. Practical sessions on prearrangement at the UFS campus throughout the year.

Assessment
Continuous: A minimum of 7 practical experiments and 6 assignments.
Formal: Two written assessments and a final assessment or 2 hours each.
After successful completion or this module the student will be able to demonstrate knowledge and understanding or the fundamental principles underpinning inorganic and analytical chemistry with respect to:
Fundamental principles and stoichiometry (classification or matter, valency, oxidation numbers, rules or nomenclature, stoichiometry, mole concept, empirical and molecular formula),
Atomic structure (quantum numbers, orbital filling with electrons (Z = 36), ionisation energy, electron affinity, atom and ion sizes),
Volumetric analysis (titration types, concentration terminologies like percentage, molar concentration with reference to milli-mol, μ-mol, mg l⁻¹, ppt and ppm, balancing or red ox reactions, stoichiometric relations, standard solutions, volumetric measurements, mass measurements),
Chemical bonding (covalent bond theory, Lewis structures, resonance structures, electronegativity, polarity, hydrogen bond, ionic bond),
Chemical equilibrium (equilibrium constant, calculations involving equilibrium concentrations, Le Chatelier's principle, solubility product constant),
Acids and bases (ionisation or H₂O and pH, strong acids and bases, titration curves for a strong acid/strong base, indicators, weak acids and bases, Kₐ and Kₑ, Brensted-Lowry and Lewis acid theories, hydrolysis or salts, oxyacids, buffers),
Chemistry in practice (ie. Acetic acid and ammonia, modern materials, liquid crystals, ceramics and chemistry in the environment),
as well as skills and techniques required in quantitative and qualitative analysis and clear concise scientific reporting or experimental procedures on samples or environmental related problems and effective interaction and working relationships within the learning group.

CEM194 - Physical and Organic Chemistry (Extended B.Sc.)
CHE194 - Physical and Organic Chemistry (Distance learning)
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
CEM194: Two lectures and one tutorial per week, one three-hour practical session per week throughout the year.
CHE194: Weekly contact sessions with facilitation at different sub region centres. Practical sessions on prearrangement at the UFS campus throughout the year.

Assessment
Continuous: A minimum of 7 practical experiments and 6 assignments.
Formal: Two written assessments and a final assessment or 2 hours each.

After successful completion or this module the student will be able to demonstrate knowledge, and understanding or the fundamental principles underpinning physical and organic chemistry with respect to:
Phases and Solutions: Description or the phases or matter and the influence or solutes on the phase characteristics or the gas phase (atmospheric pressure, pressure or a column (barometer, manometer) Gas laws (Boyle, Charles, Avogadro, Ideal gas law, Dalton, Henry)), Colligative properties (boiling point elevation and freezing point depression),
Thermodynamics: Elementary calculations on heat transfer, the first law or thermodynamics, thermo chemical processes and introduction to reaction entropy and free energy.
Electrochemistry (voltaic cell, cell potential, cell notation, spontaneity).
Reaction kinetics: Reaction orders and calculation or reaction rates, reaction times and half-lives.
Quantum chemistry: Introductory concepts with respect to theoretical, structural and spectroscopic aspects.

Hybridization of the carbon atom; properties, synthesis and reactions of hydrocarbons, alkylhalides, alcohols, ketones, aldehydes, carboxylic acids and derivatives or carboxylic acids; introduction to stereochemistry and reaction mechanisms,
as well as skills and techniques with respect to both quantitative and qualitative analysis or physical/chemical applications such as natural product analysis and syntheses or organic compounds and clear concise scientific reporting or experimental procedures and effective interaction and working relationships within the learning group.
CEM214 (16 credits) - Physical Chemistry
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
Three lectures and twelve three-hour practical sessions.

Assessment
Continuous: A minimum of 10 practical experiments and 7 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.
After successful completion of this module the learner will be able to demonstrate knowledge and understanding of the fundamental principles underpinning inorganic and analytical chemistry with respect to:
Dynamics: Properties of gases and the kinetic molecular theory.
Thermodynamics: Advanced application of the first, second and third laws of thermodynamics to chemical systems as well as thermo chemical calculations.
Phase studies: Properties of liquids and solutions.
Phase equilibria: Quantify real gas-, liquid- and solid mixtures.
Electrolytic solutions: To quantify electrolytic conductivity and transport.
Quantum chemistry: Atomic structure through the Schrodinger equation as well as own functions, own values and amplitudes of selected examples.
Quantum mechanics: Application of concepts in practice.
as well as the acquisition and development of skills and techniques with respect to analysis of physical/chemical applications and clear concise scientific reporting of experimental procedures and effective interaction and co-operation within the learning group.

CEM224 (16 credits) - Organic Chemistry
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
Two lectures and twelve three-hour practical sessions.

Assessment
Continuous: A minimum of 9 practical experiments and 7 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.
After successful completion of this module the learner will be able to demonstrate knowledge and understanding of the fundamental principles underpinning organic chemistry with respect to:
Extension of the chemistry of carbonyl compounds, carboxylic acids and carboxylic acid derivatives.
The chemistry of aromatic compounds: structure of benzene, aromaticity, electrophilic substitution, the influence of substituents on electrophilic substitution, aromatic halides and hydrocarbons, carbonyl and nitro compounds, phenols and hydroxycarbonyl compounds.
Stereocchemistry and conformation: synthesis and reactions of stereo-isomers.
as well as the acquisition and development of skills and techniques with respect to analysis of organic/chemical applications such as natural product analysis and syntheses of organic compounds and clear concise scientific reporting of experimental procedures and effective interaction and co-operation within the learning group.

CEM232 (8 credits) - Analytical Chemistry
This module has a value of 8 credits, 7 credits for subject specific learning outcomes and 1 credit for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
One lecture per week, eight three-hour practical sessions.

- 32 -
Assessment
Continuous: A minimum of 6 practical experiments and 4 assignments.
Formal: Two written assessments and a final assessment of 1 hour each.

After successful completion of this module the learner will be able to demonstrate knowledge, and understanding of the fundamental principles underpinning analytical chemistry with respect to:
Basic principles of error of observation and analysis thereof, buffer systems, analytical techniques of gravimetry, oximetry and spectrophotometry,
as well as the acquisition and development of skills and techniques required in quantitative analysis and clear concise scientific reporting of experimental procedures on samples of environmental related problems and effective interaction and co-operation within the learning group.

CEM242 (8 credits) - Inorganic Chemistry
This module has a value of 8 credits, 7 credits for subject specific learning outcomes and 1 credit for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
One lecture per week, eight three-hour practical sessions.

Assessment
Continuous: A minimum of 6 practical experiments and 4 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.

After successful completion of this module the learner will be able to demonstrate knowledge, and understanding of the fundamental principles underpinning inorganic chemistry with respect to:
Properties of covalent bonding (localized and delocalised) employing the Molecular Orbital theory, calculations on electro negativity, effective nuclear charge and magnetism, molecular geometry, chemical properties of the 3d transition metal ions, chemistry of π-acid ligands and their complexes such as carbonyls, isocyanide, dinitrogen, phosphines and cyano complexes, nomenclature of complex compounds.
as well as the acquisition and development of skills and techniques required in experimental procedures on samples of environmental related problems and clear concise scientific reporting and effective interaction and co-operation within the learning group.

CEM314 (16 credits) - Analytical Chemistry
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
Two lectures and ten three-hour practical sessions.

Assessment
Continuous: A minimum of 8 practical experiments and 4 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.

After successful completion of this module the learner will be able to demonstrate knowledge, and understanding of the fundamental principles underpinning analytical chemistry with respect to:
Modern analytical techniques such as nuclear magnetic resonance, spectrometry, electro analytical methods and classical analytical techniques such as potentiometry, voltammetry and amperometry.
Gas chromatography, complexometry and UV/visible spectrometry.
as well as the acquisition and development of skills and techniques required in modern analytical chemistry and clear concise scientific reporting of experimental procedures on samples and effective interaction and co-operation within the learning group.

CEM324 (16 credits) - Inorganic Chemistry
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.
Contact sessions
Two lectures and ten three-hour practical sessions.

Assessment
Continuous: A minimum of 8 practical experiments and 4 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.

After successful completion of this module the learner will be able to demonstrate knowledge, and understanding of the fundamental principles underpinning inorganic chemistry with respect to:
- Bonding theories and the chemistry of organometallic complexes, solution behaviour of metal complexes, introductory theory of X-ray crystallography (powder and single-crystal X-ray crystallography) in structure analysis in the solid state,
- Solid state behaviour of ionic compounds in centric cubic space groups.
- Advanced knowledge on coordination chemistry, specifically aimed at the crystal field and molecular orbital theories (as reflected in simple electronic spectra and magnetic properties), organometallic chemistry, substitution mechanisms in square-planar and octahedral complexes and general industrial and catalytic applications of organometallic catalysts.
- as well as the acquisition and development of skills and techniques required with respect to experimental procedures on samples of environmental related problems and clear concise scientific reporting and effective interaction and co-operation within the learning group.

CEM334 (16 credits) - Physical Chemistry
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
Two lectures and ten three-hour practical sessions.

Assessment
Continuous: A minimum of 8 practical experiments and 4 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.

After successful completion of this module the learner will be able to demonstrate knowledge, and understanding of the fundamental principles underpinning physical chemistry with respect to:
- Dynamics: chemical kinetics and surface chemistry.
- Thermodynamics: advanced chemical thermodynamics, free energy, chemical equilibrium, multi-component systems and electrochemistry.
- Macromolecular chemistry: the syntheses, characterization and molecular mass determination of polymers.
- Basic principles of nuclear and radiochemistry.
- as well as the acquisition and development of skills and techniques with respect to analysis of physical/chemical applications and clear concise scientific reporting of experimental procedures and effective interaction and co-operation within the learning group.

CEM344 (16 credits) - Organic Chemistry
This module has a value of 16 credits, 14 credits for subject specific learning outcomes and 2 credits for critical (generic) outcomes with respect to literacy skills in oral and written reasoning, numeracy, experimental and problem solving skills.

Contact sessions
Two lectures and ten three-hour practical sessions.

Assessment
Continuous: A minimum of 8 practical experiments and 4 assignments.
Formal: Two written assessments and a final assessment of 2 hours each.

After successful completion of this module the learner will be able to demonstrate knowledge and understanding of the fundamental principles underpinning organic chemistry with respect to:
- The principles and applications of physical techniques (e.g. NMR). Introduction to dynamic stereochemistry.
Advanced reactions, mechanisms and their stereochemistry including reactions of carbohydrates, the Diels-Alder reaction, the addition of alkenes (e.g. oxymercuration, hydroboration, carbene addition), nucleophilic addition of aldehydes and ketones (e.g. Wittig reaction, Cannizzaro reaction), alpha substitution of carbonyl compounds (e.g. (iii) alpha-halogenation, alkylation of enolate ions) and carbonyl condensation reactions (e.g. Claisen condensations).

as well as the acquisition and development of skills and techniques with respect to analysis of organic/chemical applications such as natural product analysis and syntheses of organic compounds and clear concise scientific reporting of experimental procedures and effective interaction and co-operation within the learning group.

CGS108 (32 credits) - General Science Concepts
(Department of Geography)
Six lectures per week. Practical work is integrated into the lectures.
Two two-hour examination papers.
The aim of the module is to give students an integrated view of the sciences, as well as a notion of the holistic nature of science and the environment. Scientific concepts are investigated and gaps in current knowledge are addressed simultaneously. Central principles of the physical and life sciences and their interactions are highlighted that students can grasp the interdependency of the sciences with the physical and human environments as well.
The module exists of four parts, each representing a component of the sciences, i.e. the Earth and the universe, Energy, Matter and Life. Communication, teamwork, debating, writing skills, logical expression, be it oral or written, critical thought and questioning, problem solving, lateral thinking, logical deduction and responsible time management are skills which receive attention in this module.
After successful completion of this module, the student should have the ability to show insight into the complex functioning of the earth and the universe. The integrated manner in which the scientific components are handled and the holistic approach to humans and their environment, will be of help to any student in the sciences.

DRK214 (16 credits) - Parasites, Vectors and Toxic (Poisonous and Venomous) Animals
(Department of Zoology and Entomology)
Three lectures per week throughout the first semester.
Evaluation by work assignments, class tests, two module tests and one examination paper of three hours.
Identification, morphology, life cycles, pathology and treatment of parasites and vectors of medical and veterinary importance in Africa. Identification, nature and extent of veterinary and medically important poisonous and venomous invertebrates (excluding insects) and vertebrates in South Africa. Nature and action of different toxins as well as emergency treatment.
After successfully completing this course, the student will be able to identify important parasites and vectors in an African context, as well as toxic animals from South Africa, and acquire knowledge on distribution, pathology and prevention of the parasites and vectors as well as knowledge regarding the toxicity of poisonous and venomous animals.

DRK224 (16 credits) - Africa Vertebrates
(Department of Zoology and Entomology)
Three lectures per week throughout the second semester.
Evaluation by work assignments, class tests, two semester tests and one examination paper of three hours.
The unique diversity of the vertebrate fauna of Africa is pointed out with emphasis on the endemic fauna of the southern African sub region: Systematic, ecology, survival status, utilisation, etc. After successfully completing this course, the student will be able to identify any African vertebrate and understand the ecology of African animals.
DRK252 (8 credits) - Invertebrate Biodiversity (practical)
(Department of Zoology and Entomology)
One four-hour practical per week throughout the first semester.
Evaluation by work assignments, class tests and a practical examination of three hours.
Taxonomy, functional morphology and anatomy, phylogeny, ontogeny and biology of selected invertebrate phyla.
After successfully completing this course, the student will have a basic knowledge of the morphology and biology of selected groups of invertebrates.

DRK262 (8 credits) - Vertebrates: Research Techniques (practical)
(Department of Zoology and Entomology)
One four-hour practical per week throughout the second semester.
Evaluation by work assignments, class tests and one practical examination of three hours.
Research techniques which can be used for the efficient collection and analysis of data with regard to vertebrates in natural environments are explained and practically implemented.
After successfully completing this course, the student will be able to conduct research projects independently under field conditions.

DRK314 (16 credits) - Marine and Freshwater Ecology
(Department of Zoology and Entomology)
Two lectures and one three-hour practical per week throughout the first semester.
Evaluation by work assignments, class tests, two module tests and one practical examination and one examination paper of three hours each.
The South African coast is unique largely as a result of ocean currents, which result in dividing our coastline into three distinct regions, each hosting a unique intertidal fauna. The composition of these ecosystems is studied with special reference to sandy beaches, rocky shores, kelp beds and estuaries. The practical component of this course is in the form of a marine field excursion during the autumn recess.
In freshwater ecology basic limnological techniques are demonstrated. These include mapping of small dams, determining pH, conductivity, dissolved oxygen, etc., as well as techniques for collection, identification and quantification of aquatic organisms such as plankton, benthos, epibiont and fishes.
Outcome: After successfully completing this course, the student will have a thorough knowledge of the functions and interactions of intertidal ecology and will be able to determine physical and chemical parameters of water such as collection and identification of aquatic organisms.

ZOO324 (16 credits) - Systematic and Population Genetics
(Department of Zoology and Entomology)
Two lectures and one three-hour practical per week throughout the second semester. Evaluation by work assignments, class tests, two module tests and one practical examination and one examination paper of three hours each.
Introduction to phylogenetic analysis, using morphological and molecular data; different approaches to phylogeny reconstruction; applications of these techniques in evolutionary comparisons; the coalescent model of gene-genealogies within species; estimating population size and migration rates from DNA sequence data; phylogeography - the inference of population histories from gene-tree data.
After successfully completing this module, the student will have a broad perspective on the applications of phylogenetics and phylogeography, and will be able to discuss systematic reconstructions at a graduate level.
DRK334 (16 credits) - Conservation Ecology
(Department of Zoology and Entomology)
Three lectures per week throughout the first semester. Evaluation by work assignments, class tests, two module tests and one examination paper of three hours.
The influence of human activities on ecosystems is critically reviewed. This includes humans as latecomers in evolution, man’s ecological footprint, biodiversity, speciation, extinction and Africa’s natural history. Some conservation issues are analysed. These include an evaluation of the state of our natural resources, translocation and introduction of aquatic animals, aquaculture, the mining industry and in particular the exploration of alluvial diamonds on the west coast, damming of rivers, etc.
After successfully completing this course, the student will be able to critically evaluate human impact on the environment and will be able to provide practical solutions for environmental problems.

ZOO344 (16 credits) - Immunoparasitology
(Department of Zoology and Entomology)
Three lectures per week throughout the second semester. Evaluation by paper and class presentations, journal clubs, bibliographic summaries, class tests, two module tests and one examination paper of three hours.
A core course combining formal lectures, student presentations of assigned research/review papers, and group discussions. Subjects include parasite life histories, the evolutionary biology of parasitism, host-parasite interaction, parasite genetics; basic concepts of immunity and the immune system including evolutionary and comparative studies, specific and non-specific immunity, biology of T and B lymphocytes, immunochemistry and the role and action of cytokines; and parasite control strategies. Students also select and review several current research articles.
After successfully completing this course, the student will be able to:
(a) describe selected protozoa of medical importance in terms of their biology, life-cycles, epidemiology and clinical features
(b) understand the basic principles of laboratory diagnosis and treatment of selected parasitic infections
(c) understand the origins of parasitic infections and relationships between parasites and hosts
(d) demonstrate a detailed knowledge of the mammalian immune system, including specific and non-specific immune responses
(e) describe the molecular and genetic basis of strategies employed by parasites to invade host tissue, avoid host defence mechanisms and proliferate at sites of infection
(f) explain and appreciate the molecular and cellular approaches used to investigate infectious and immunological diseases
(g) analyse and interpret information acquired from primary literature sources, then organise and communicate it in oral and written form
(h) demonstrate in writing and orally, a capacity for critical analysis of a specialised or topical issue of parasitology or immunology.

FSK114 (16 credits) - Mechanics, optics and electricity
(Department of Physics)
Three one-hour lectures and one tutorial/practical session of three hours per week in the first semester.
One examination paper of two hours.
Logical exposition of fundamental principles and the development of problem solving skills are addressed.
Mechanics: Revision of the elementary concepts: displacement, velocity, acceleration, force, work, energy, power, projectile motion and rotation.
In the above vector quantities and simple calculus is used wherever needed.
Geometrical optics: The electromagnetic spectrum, plane mirrors, spherical mirrors, image formation, thin lenses, optical instruments.

Electricity: Electrical charge, electrical field, electrical potential, current, resistance, circuits.

After successful completion of the module a successful learner should:
(a) Be able to describe the basic phenomena and theory concerning mechanics, geometrical optics and electricity.
(b) Have the skills necessary to solve problems, applied to the above topics, as well as collect, analyse, order and critically evaluate information.

FSK124 (16 credits) - Mechanics, thermodynamics, electricity and magnetism
(Department of Physics)
Three one-hour lectures and one tutorial/practical session of three hours per week in the second semester.
One examination paper of two hours.
Logical exposition of fundamental principles and the development of problem solving skills are addressed.

Mechanics: Momentum, collisions, rotation, gravitation, oscillations, waves.
Thermodynamics: Temperature, heat, first law of thermodynamics, kinetic theory of gases, entropy, second law of thermodynamics.
Electricity and magnetism: Gauss's law, capacitance, magnetic field, Ampere's law, induction and inductance, simple alternating current circuits.

After successful completion of the module a successful learner should:
(a) Be able to describe the basic phenomena and theory concerning mechanics, thermodynamics, electricity and magnetism.
(b) Have the skills to solve problems, applied to the above topics, as well as collect, analyse, order and critically evaluate information.

FSK134 (16 credits) - Mechanics, optics, electricity, biologically and medically relevant topics
(Department of Physics)
Three one-hour lectures and one tutorial/practical session of three hours per week in the first semester.
One examination paper of two hours.
Applications of physics in biology and medicine are discussed in this course.

Mechanics: Revision of the elementary concepts: displacement, velocity, acceleration, force, work, energy, power. Treatment of the above without calculus.

Geometrical optics: The electromagnetic spectrum, plane mirrors, spherical mirrors, image formation, thin lenses, optical instruments.

Electricity: Electrical charge, electrical field, electrical potential, current, resistance, circuits.

Biologically and medically relevant topics: Physical principles of apparatus used in biology and medicine, some applications of physics in these fields.

After successful completion of the module a successful learner should:
(a) Be able to describe the basic phenomena and theory concerning mechanics, geometrical optics and electricity as well as the applications thereof in biology and medical science.
(b) Have the skills to solve problems, applied to the above topics, as well as collect, analyse, order and critically evaluate information.

FSK144 (16 credits) - Mechanics, thermodynamics, electricity, magnetism, biologically and medically relevant topics
(Department of Physics)
Three one-hour lectures and one tutorial/practical session of three hours per week in the second semester.
One examination paper of two hours.
Applications of physics in biology and medicine are discussed in this course.
Mechanics: Momentum, collisions, rotation, gravitation, oscillations, waves.

Thermodynamics: Temperature, heat, first law of thermodynamics, kinetic theory of gases, entropy, second law of thermodynamics.

Electricity and magnetism: Gauss's law, capacitance, magnetic field, Amperé's law, induction and inductance, simple alternating current circuits.

Biologically and medically relevant topics: Physical principles of apparatus used in biology and medicine, some applications of physics in these fields.

After successful completion of the module a successful learner should:

(a) Be able to describe the basic phenomena and theory concerning mechanics, thermodynamics, electricity and magnetism, as well as the application thereof in biology and medical science.

(b) Have the skills to solve problems, applied to the above topics, as well as collect, analyse, order and critically evaluate information.

FSK214 (16 credits) - Mechanics, waves and optics
(Department of Physics)

Three one-hour lectures per week during the first semester.

One examination paper of three hours.

Much of physics and engineering demands a thorough knowledge of vibrating systems and wave behaviour. After a review of Newtonian dynamics, it is applied to systems experiencing a restoring force, leading to simple harmonic motion. This theory is generalized to the cases of damped and driven oscillators. The wave equation is derived, and standing waves, as well as the reflection and transmission of waves are explained. Polarization, interference and diffraction of light, illustrating its wave nature, are then discussed.

After the successful completion of the module the learner should:

(a) Be able to solve dynamics problems for forces that are constant, time dependent, position dependent and velocity dependent, for arbitrary initial conditions.

(b) Be able to explain the concept of a restoring force, be able to apply Hooke's Law and explain briefly its applicability to elasticity theory.

(c) Be able to derive and apply equations describing an undamped vibrating system (simple harmonic oscillator) and describe the associated physical quantities.

(d) Be able to derive and apply equations describing damped harmonic motion (with or without a driving force), and to explain the concept of resonance.

(e) Be able to decompose periodic functions into Fourier series.

(f) Be able to discuss the wave equation, standing waves and the transmission and reflection of waves.

(g) Be able to explain superposition, coherence and Young's experiment, and perform calculations of the interference of light in a Michelson interferometer and thin films.

(h) Be able to derive and apply an equation for the intensity pattern as light passes through a single slit, be able to apply equations for the diffraction through a circular aperture and through a double slit, explain the Rayleigh criterion for resolving power and derive and apply equations describing the properties of a diffraction grating.

FSK224 (16 credits) - Electronics
(Department Physics)

Two one-hour lectures and one practical session of 5 hours per week.

One examination paper of three hours.

Electronics: Properties of semiconductors, diodes, rectifier circuits, zener diodes, power supplies, transistors, transistor amplifiers, operational amplifiers, operational amplifiers in feedback circuits, timer circuits, digital circuits and, computers ports.

Practical work in electronics: Diodes, power supplies, transistors, operational amplifiers in feedback circuits, timer circuits, digital circuits and computers control. A project and seminar.
After successful completion of the module the successful learner should:

(a) Be able to describe and apply the basic theory regarding semi-conductors, diodes, rectifier circuits, zener diodes, power supplies, transistors, transistor amplifiers, operational amplifiers, operational amplifiers in feedback circuits, timer circuits and digital circuits.

(b) Have the skill to read electronic circuits and be able to know how the circuit operates.

(c) Have the skill to design smaller electronic circuit.

(d) Have a limited skill to interface a computer with an electronic circuit.

FSK232 (8 credits) - Practical work: Physics (Department of Physics)
One practical session of 5 hours per week during the first semester.
Practical work on oscillations, waves and optics: experiments with mechanical oscillations, light interference, and computer simulations of waves and Fourier analysis.
After the successful completion of the module the learner should be able to:

(a) Be familiar with common experimental apparatus and measuring systems (e.g. multi-meter, oscilloscope, vernier scale, etc.).

(b) Be confident in working with apparatus.

(c) Be able to write a scientific report.

FSK242 (8 credits) - Electromagnetism (Department of Physics)
Two one-hour lectures per week during the second semester.
One examination paper of two hours.
The electromagnetic force is one of the four fundamental forces in nature. It dominates the interaction of matter on the atomic scale and governs the behaviour of the full spectrum of electromagnetic waves.
After the successful completion of the module the learner should be able to:

(a) Have a working knowledge of vector algebra.

(b) Be able to explain the concepts of and solve problems in electrostatics, direct current circuits, alternating current circuits and magnetostatics.

(c) Be able to calculate induced electric fields and potentials.

(d) Be able to calculate the forces on charges moving in an electric field and currents flowing in a magnetic field.

(e) Be able to explain and apply Maxwell’s equations and the concept of electromagnetic waves.

FSK254 (16 credits) - Ophthalmic Optics/Visual Optics (Department of Physics)
Three one-hour lectures per week during the first semester.
One examination paper of three hours.
This course covers the basics of lens materials including single vision lenses, prisms, bifocals and vertical imbalance. Optical principles are applied to the study of ophthalmic lenses including spheres, cylinders, prisms, multi-focal lenses and contact lenses. Design parameters for ophthalmic lenses and applications to the correction of vision defects are also discussed. Students are familiarized with the basic optical structure of the eye as well as the cornea and lens as refracting components, the pupil as a limiting aperture and paraxial schematic eye. Other topics in the course will include the following: image formation and refraction, optical effects of ophthalmic lenses, light and the eye, aberrations and retinal image quality.
At the completion of this course, the student should have a basic knowledge of and/or skill in the following areas:

(a) Physical and optical characteristics of single vision lenses, neutralization and lens effectively change.

(b) Ophthalmic prisms and prismatic effects of lenses. Resultant of combination of prisms, prism effects in various lens forms, thickness considerations and neutralization.

- 40 -
The physical and optical characteristics of multi-focal lenses, including segments, common types and how they work, displacement effects in segments, segment measurements and blank sizes.

Describe important optical concepts relative to the eye, cornea, lens and pupil.

Define the axes of the eye and be familiar with the concept of paraxial schematic eyes.

Describe image formation on the retina including the effect of refractive errors.

Describe various magnifications, field-of-view and field-of-vision as applied to ophthalmic lenses.

Familiar with the electromagnetic spectrum and optical concepts such as absorption, transmittance and scattering.

Define monochromatic aberrations and apply to schematic eyes.

FSK262 (8 credits) - Special topics in optics
(Department of Physics)
Three one-hour lectures per week during the first quarter of semester 2.
One examination paper of two hours.
This course expands the student’s field of study towards possible future trends in optometry and vision science, encouraging the critical evaluation of technical information concerning topics like biomedical implants, novel lens systems and frame types and materials. To keep up to date with current issues, intensive use will be made of information available on the Internet and new relevant topics can be added to the syllabus. Students will also be introduced to quality standards by participating in basic optical measurements on commercially available ophthalmic lenses using previously acquired optical knowledge.

At the completion of this course, the student should have a basic knowledge of and/or skill in the following areas:
(a) Awareness of future trends in optometry and vision science and the ability to evaluate the technical information available on these topics.
(b) Use of the Internet to retrieve information on current trends in optometry and visual science.
(c) Familiar with basic optical techniques and instrumentation to perform quality control on commercially available ophthalmic lenses and to evaluate the results in terms of absorption/transparency and polarizability.

FSK314 (16 credits) - Modern physics
(Department of Physics)
Three one-hour lectures per week during the first semester.
One examination paper of three hours.

Special relativity: Galilean and Lorentz transformations, length contraction, time dilation, relativistic Doppler shift and aspects of relativistic mechanics.

Particle properties of waves: Black-body radiation, photo-electric effect, Compton effect, gravitational red and blue shift, Mössbauer effect and applications.

Wave properties of particles: Electron diffraction, de Broglie waves, probability waves, Heisenberg’s uncertainty principle.

Introductory quantum physics: Schrödinger’s equation, one dimensional potential well, quantum mechanical tunnelling and its applications, hydrogen atom, orbital angular momentum and electron spin, Zeeman effect and applications.

Nuclear Physics: The atomic nucleus, radioactivity, quantum mechanical treatment of alpha-decay, nuclear fission and fusion reactions, reaction rate, neutron transport in reactors.

After the successful completion of this module, the successful learner should have:
(a) A solid and useable background in the basic aspects and theories with respect to special relativity, introductory quantum mechanics and nuclear physics.
(b) The necessary skills to solve relevant problems in these disciplines.
FSK324 (16 credits) - Solid-state physics
(Department of Physics)
Three one-hour lectures per week during the second semester.
One examination paper of three hours.
Structure of solids: Crystallography: crystal planes, crystal lattice, reciprocal lattice, Defects: point defects, dislocations, X-ray diffraction.
Lattice dynamics: Lattice vibrations: Einstein and Debye models, normal modes and density of states, thermal properties, Brillouin zones.
Free electron model: Electrical and thermal conduction, Fermi level, Hall effect.
Periodic Potential: Band theory: nearly free electron and tight binding approach.
After successful completion of the module the student should have thorough knowledge and be able to solve relevant problems on:
(a) Crystal structures and the interatomic forces responsible for these structures.
(b) Diffraction by crystals (x-rays, electrons and neutrons).
(c) Lattice vibrations and the effects on thermal, acoustic, and optical properties.
(d) The free-electron model in metals.
(e) Energy bands in solids.

FSK332 (8 credits) - Statistical physics I
(Department of Physics)
One one-hour lecture per week during the first semester.
One examination paper of two hours.
Phase space, distribution function, the most probable distribution, Lagrange multipliers, Boltzmann distribution, degeneracy of energy levels, the Maxwell-Boltzmann velocity distribution, the Maxwell-Boltzmann speed and energy distributions, the derivation of the equation of state of an ideal gas using the Maxwell-Boltzmann distribution, paramagnetism. Applications in terms of transport processes like effusion and diffusion, derivation of the hydrodynamic equations of motion of gases and fluids, heat conduction, propagation of sound waves, and viscosity.
After successful completion of the module the successful learner should be able to:
(a) Have a solid and useable background in the basic aspects of statistical physics and transport theory in the classical limit.
(b) Have the necessary background to solve basic problems in kinetic theory, thermodynamics and fluid dynamics.

FSK342 (8 credits) - Statistical physics II
(Department of Physics)
One one-hour lecture per week
One examination paper of 2 hours
Quantum statistics, the Fermi-Dirac and Bose-Einstein statistics and distributions, the equation of state of a quantum gas, Fermi temperature, low-temperature properties of a degenerate gas, the degenerate electron gas, valence and conduction bands in semiconductors, degenerate gases in astrophysics: white dwarfs and neutron stars, Blackbody radiation, the photon gas, stimulated emission, Debye specific heat, electron specific heat.
After successful completion of the module the successful learner should be able to:
(a) Have a solid and useable background in the basic aspects of statistical physics in the quantum limit.
(b) Have the necessary background for the solving of basic problems in this discipline.

FSK352 (8 credits) - Practical work: Physics
(Department of Physics)
One practical session of 5 hours per week during the first semester.
Practical work on phenomena that are explained by modern physics, as well as a few experiments in statistical physics and thermodynamics.
After the successful completion of the module the learner should:
(a) Be familiar with physical apparatus and measuring systems.
(b) Be confident in working with physical apparatus.
(c) Be able to write a scientific report.

FSK362 (8 credits) - Practical work: Physics
(Department of Physics)
One practical session of 5 hours per week during the second semester.
Practical work on phenomena that are explained by solid state theory as well as a few experiments in statistical physics and thermodynamics.
After the successful completion of the module the learner should:
(a) Be familiar with physical apparatus and measuring systems.
(b) Be confident in working with physical apparatus.
(c) Be able to write a scientific report.

HUM124 - Personnel Psychology
(Department of Industrial Psychology)

IBM314 - Internet Marketing
(Department of Business Management)
Internet, Internet users, Internet business models, Marketing strategy and the Internet, Customer support, E-commerce, Internet marketing plan.

PLK212 (8 credits) - Practical plant morphology and propagation (practical)
(Department of Plant Sciences)
Five hour practical per week throughout the semester.
Evaluation by work assignments, class tests and an end assessment.
Plant propagation: Alleviation of seed dormancy, vegetative reproduction by means of specialized plant organs, artificial plant propagation (cuttings, grafting, layering), plant tissue culture techniques (micro propagation, embryo cultures, multiplication of transformed plants).
External morphology of plants: Roots, stems and leaves; modifications of plant organs as ecological adaptations; structure of inflorescences and flowers, pollination, fertilization; development, structure and distribution of fruits and seeds.
After successful completion of the module the student should have:
(a) A basic knowledge of seed dormancy and the manipulation thereof.
(b) A basic knowledge of vegetative reproduction by plants.
(c) An understanding of the techniques used to artificially reproduce plants.
(d) A comprehensive knowledge of the morphology of plant organs as well as the ecological adaptations of plants.
(e) Knowledge of the basic techniques of plant micro technique and micro morphology.

PLK214 (16 credits) - Plant anatomy and introductory biotechnology
(Department of Plant Sciences)
Three lectures per week throughout the semester.
One examination paper of three hours.
Plant anatomy: Study of cell wall, ergastic substances (starch grains, crystals etc.), ovule and embryo sac, fertilization and development of embryo, tissues (parenchyma, collenchyma,
sclerenchyma, epidermis, periderm, xylem, phloem), secretory structures and organs (root, stem and leaf).

Alternative cultivation of plants: plant nutrient cycles, uptake and importance of plant nutrients, "organic" and hydroponics cultivation of plants.

Secondary products in plants: Economic and medicinal importance.

After the successful completion of the module the student should be able to:

(a) Have a basic knowledge of plant nutrient requirements.
(b) Have a basic knowledge of how plants can be cultivated "organically" and hydroponically.
(c) Have a basic knowledge of the economic and medicinal value of plants.
(d) Have a basic knowledge of the structure, function and relationship of tissue types as well as the structure of organs.

PLK262 (8 credits) - Experimental plant physiology (practical)
(Department of Plant Sciences)
(May only be taken as a practical module for PLK224).
Five hours practical per week throughout the semester (practical is usually introduced by an applicable lecture).
Evaluation by means of reports, assignments, class tests and an end assessment.
Experiments will deal with water relations, transport mechanisms, plant nutrition and analysis, plant growth and development, especially the role of plant hormones which includes tissue cultures.
After completion of the module the student should have gained, in addition to basic laboratory skills, skills in experimental plant physiology regarding to plant-water relations (e.g. water potential determinations), plant analyses, plant growth regulators and tissue cultures. These skills are important for the student to eventually independently perform experiments.

PLK224 (16 credits) - Plant growth and developmental physiology
(Department of Plant Sciences)
(Associated practical module is PLK262).
Three lectures per week throughout the semester.
One examination paper of three hours.
Water balance (absorption, transpiration, transport), mineral nutrition (essential elements, absorption, ion traffic) and transport of metabolites (phloem transport). Growth regulators, plant movements, photomorphogenesis, biological clock, photoperiodism and the effect of temperature on growth and development.
After successful completion of the module the student should have a thorough knowledge of:
(a) Plant water relations.
(b) Plant nutrition.
(c) Absorption and transport mechanisms in plants.
(d) The effect of environmental conditions (e.g. light, temperature, day length) and internal factors (e.g. growth regulators, biological clock) on the growth and development of plants which contribute to a better understanding of the functioning of plants.
This knowledge is important and of practical value in the plant-related industries such as agriculture, horticulture, nurseries, forestry, nature reservation, seed and fertilizer companies etc. as well as teaching and research professions.

PLK314 (16 credits) - Taxonomy and ecology of vascular plants (including a field excursion)
(Department of Plant Sciences)
Two lectures and a three hour practical per week throughout the semester.
One examination paper of three hours.
The taxonomic part of this course will deal with the following: origin of the flowering plants, phylogeny, geographical distribution of the flowering plant families, economical importance of the flowering plants, sources of taxonomic information, plant taxonomic principles, plant nomenclature, preparation of herbarium specimens, use of the herbarium and methods of plant identification.
The ecological part will deal with: quantitative analyses, classification and ecological interpretation techniques based on structure and species composition, bio monitoring techniques of land ecosystems, as well as rehabilitation of disturbed areas. During the field excursion the student will be exposed to the plant biodiversity of South Africa. Identification of species and plant survey techniques will be explained and the different environmental factors influencing vegetation will be pointed out.

After successful completion of the module the student should be able to:
(a) Have knowledge of the important South African flowering plant families and their economical importance.
(b) Have a basic knowledge of nomenclature, identification and phylogenetic classification of plants.
(c) Be able to collect, process and name herbarium specimens and use the herbarium.
(d) Know and be able to apply techniques to analyse and classify vegetation.
(e) Be able to interpret and describe the classified data.
(f) Have general knowledge of the vegetation of southern Africa.

PLK324 (16 credits) - Plant metabolism
(Deartment of Plant Sciences)
Two lectures and a three hour practical per week throughout the semester.
One examination paper of three hours.

Plant respiration: cytosolic and mitochondrial reactions, measurement of plant respiration, fermentation, regulation of plant glycolysis with special reference to key enzymes, the physiological role of the alternative oxidation pathway in plants, role of Q-cycle in energy production, manipulation of plant respiration and the oxidative pentose phosphate pathway (OPP pathway). Photosynthesis: the chloroplast and associated pigments, photochemical and non-photochemical reactions of photosynthesis, photophosphorylation (cyclic & non-cyclic), C4-reduction cycle, photorespiration, C3- and CAM-photosynthesis. The methodology in determining photosynthetic rate through fluorescent techniques.

Nitrogen metabolism: Fixation, assimilation, transamination, conversion in developmental processes and the respiratory nitrogen cycle.

After the successful completion of the module the student should:
(a) Have a thorough knowledge of respiratory metabolism in plants and how it can be manipulated in food production.
(b) be able to apply techniques to determine and manipulate the respiration rate in plants.
(c) have a thorough knowledge of the light dependent and light independent reactions of photosynthesis, cyclic and non-cyclic photophosphorylation, role of the Q-cycle in energy production, photorespiration, C4 and CSM plants.
(d) be able to apply fluorescent techniques to determine photosynthesis and primary production in plants.
(e) have a basic knowledge of nitrogen metabolism in plants.

PLK 334 (16 credits) - Environmental change and ecology
(Deartment of Plant Sciences)
Two lectures and a three hour practical per week throughout semester.
One examination paper of three hours.

Limnology, including water as environment for living organisms, types of freshwater bodies, its availability, physical qualities, chemical qualities, plant nutrients, biological diversity, productivity and pollution.

African biogeography and environmental factors determining structure and composition of vegetation, e.g., energy, biogeochemical cycles, succession of plants, other interactions between species and populations, fire, and climate (including El Niño phenomena). Fossils and origins of biome, ecosystems and communities including C3 and C4 plants, long-term environmental change, and methods of studying it.
Current environmental change, including global atmospheric circulation models, influence of people and modern industry on the atmosphere, greenhouse effect, global warming, ozone loss/build-up, desertification, deforestation, etc.

After successful completion of the module a student should have knowledge of the different factors controlling life in aquatic and terrestrial ecosystems, the origins of ecosystems and current changes that influence or threaten their existence.

PLK344 (16 credits) - Plant defence and biotechnology
(Department of Plant Sciences)
Two lectures and a three hour practical per week throughout the semester.

One examination paper of three hours.

The defence mechanisms of plants against biotic (pathogens and insects) and a biotic (drought, heat, cold, ozone etc.) stress factors on physiological-biochemical level: Constitutive and induced defence, structural and biochemical defence, hypersensitive reaction, systemic acquired resistance, signal mechanisms and manipulation of resistance. Biotechnological application of plants: e.g. to perform chemical reactions and to produce special products of industrial and pharmaceutical importance.

Principles, applications and economical potential of algal biotechnology, design of bioreactors, candidate species for algal biotechnology, and practical experience in algal growth and production.

After successful completion of the module the student should be able to:
(a) Know the natural defence mechanisms in plants which result in resistance.
(b) Understand the functioning of bioreactors and the mass cultivation of algal and plant biomass.
(c) Have a good insight in the potential and scope of the production and various products from plants and algae.
(d) Have gained practical experience in the cultivation of algae.

This knowledge is important for the manipulation of resistance and is of practical value to control stress factors. In addition, fresh insights obtained can be helpful in the alternative economic uses of plants and algae.

RIS143 (16 credits) - Introduction to computers for business environments
(Department of Computer Science and Informatics)
Three lectures and one three-hour practical per week in the first semester.

One examination paper of three hours.

The module deals with aspects that include the origins and development of the computer, the basic working of a modern computer, computerised problem solving and an introduction of algorithms and objects, control structures, object-oriented program design using a high-level programming language, and simple input and output.

After the successful completion of the module the student should be able to:
(a) Be able to do basic problem solving in an object oriented, visual, high-level programming environment.

[Two of the 16 credits are allocated to critical (generic) outcomes with respect to computer skills, problem solving, numerical skills, and written reasoning in this module.]

RIS121 (4 credits) - Advanced computer usage
(Department of Computer Science and Informatics)
This course is evaluated by continuous assessment, and no special examinations are granted.

After the successful completion of the module the student should be able to:
(a) Have knowledge of advanced aspects of a general word processing program, like tables and communication by way of spreadsheets, and must be able to apply it.
(b) Have knowledge of advanced aspects of spreadsheets, such as graphs and macros, and must be able to apply it.
(c) Have knowledge of the basic commands of a presentation program and must be able to apply it.
(d) Have knowledge of the basic commands of a database program and must be able to apply it.

RIS144 (16 credits) - Introduction to information systems
(Department of Computer Science and Informatics)
Three lectures and one three-hour practical per week in the second semester.
One examination paper of three hours.
This module deals with information systems and business-oriented programming, file design, functions and parameter passing, debugging techniques, user communication and report writing, data manipulation, indexing and sorting.
After the successful completion of the module the student should be able to:
(a) A thorough knowledge of functions and parameter transfer, debugging techniques, arrays, and file handling,
(b) A thorough knowledge of information systems and user communication,
(c) A thorough knowledge of business programming and the practical implementation thereof.
[Two of the 16 credits are allocated to critical (generic) outcomes with respect to computer skills, problem solving, numerical skills and written reasoning in this module.]

RIS222 (8 credits) - Introduction to the Internet and Web Page Development
(Department of Computer Science and Informatics)
One lecture per week and one 1-hour practical per week in the second semester.
One examination paper of two hours.
The development of good web pages requires that the programmer has knowledge of various web aspects and technologies. This includes the working of the Internet, networks and data communication, graphical interfaces, Internet protocols and web page design.
After successful completion of this module the student should be able to:
(a) Demonstrate knowledge of the evolution of the Internet and the Web.
(b) Conduct Internet searches.
(c) Demonstrate knowledge of the different types of networks and how communication takes place within/between these networks.
(d) Recall the working of internet protocols.
(e) Apply client-side scripting and style sheets to develop a complete web site.

RIS224 (16 credits) - User interfaces
(Department of Computer Science and Informatics)
Two lectures and one two-hour practical per week in the second semester.
One examination paper of three hours.
If the potential computer user is not accommodated throughout the design process of a computer system, the system will not be used and money and energy will be wasted. This module provides the user with an introduction to Human-Computer Interaction (HCI). Aspects that are covered include usability, human factors, models of interaction, data collection, the design of user interfaces, visual interfaces and the evaluation of interfaces.
After the successful completion of the module the student should be able to:
(a) Have a thorough knowledge of the principles of Human-Computer Interaction.
(b) Explain the role of the computer user in the design of computer systems.
(c) Be able to design a user-friendly visual interface by applying all the factors that determine a user-friendly interface.
(d) Be able to evaluate a user interface while considering all the role-players.
RIS236 (24 credits) - Implementation of object-oriented information solutions
(Department of Computer Science and Informatics)
Three lectures and one three-hour practical per week in the first semester.
One examination paper of three hours.
The module deals with the solving of problems by introducing the advanced concepts of
programming. The focus is on solving typical business problems by means of integrated databases.
After the successful completion of the module the student should be able to:
(a) Have a thorough knowledge of some of the advanced features of the rapid application development (RAD) environment and know how to use them to develop a working program.
(b) Design an object hierarchy that models a typical business environment.
(c) Connect to an advanced database environment.
(d) Create and manage reusable elements to enhance programming productivity.
(e) Make use of Windows' built-in code elements.
(f) Create help files to accompany applications.

RIS314 (16 credits) - Introduction to databases and database management systems
(Department of Computer Science and Informatics)
Two lectures and one three-hour practical per week in the first semester.
One examination paper of three hours.
This module deals with database concepts, design and implementation concepts, transaction management and concurrency control, distributed database management systems, and object-oriented databases.
After successful completion of the module the student should be able to:
(a) Be knowledgeable about the fundamental principles of databases.
(b) Be able to design and implement a database.
(c) Be proficient with database programming.

RIS324 (16 credits) - Software engineering
(Department of Computer Science and Informatics)
Two lectures and one three-hour practical per week in the second semester.
One examination paper of 3 hours.
This module provides the student with an introduction to Software engineering. Aspects covered are requirement definition, program design, programming practice, programming languages, tests and debugging, documentation, maintenance, and aids.
After the successful completion of the module the student should:
(a) Have a thorough knowledge and understanding of the principles of Software engineering.
(b) Have a thorough theoretical knowledge of aspects of Software engineering in order to apply it.
(c) Have knowledge of the management of a project and be able to apply it.
(d) Be able to successfully participate as a member of a team.

RIS334 (16 credits) - Internet Programming
(Department of Computer Science and Informatics)
Two lectures and one three-hour practical per week in the first semester.
One examination paper of three hours.
The development of interactive database driven web applications requires from the programmer thorough knowledge of server-side Internet programming.
After the successful completion of the module the student should be able to:
(a) Explain the working of a web server.
(b) Become familiar with the different types of server-side web programming languages.
(c) Understand how a high-level web programming language works.
(d) Be able to develop a dynamic database driven website using a high-level web programming language.
RIS344 (16 credits) - Computer networks
(Department of Computer Science and Informatics)
Two lectures and one three-hour practical session per week in the second semester.
One examination paper of three hours.
This module provides the student with an overview of network concepts. Aspects that are covered are network architecture, low-level network technologies, coupling techniques, Internet work concepts, end-to-end protocols, stacking and resource allocation, security, and network applications.
After successful completion of this module the student should:
(a) Be familiar with the fundamental principles of computer networks.
(b) Be able to distinguish among networks in general use.
(c) Be able to set up simple networks.
(d) Be able to identify errors on networks.

STK114 (16 credits) - Introduction to Statistics (I)
(Department of Mathematical Statistics)
Three lectures and one three-hour practical and four hours of self-study per week during the first semester.
One three-hour examination paper.
Elementary calculations, elementary interest calculations. Index numbers, time series. Introduction to Statistics and collection of data.
After successfully completed the module the student must be able to:
(a) Do the basic mathematical operations, calculate the different types of interests and annuities, calculate and interpret index numbers, interpret time series graphically and analyse the data to predict future values, understand what statistics are, collect data by means of different techniques and design a questionnaire to collect data.
(b) Have the skills to do mathematical calculations, distinguish between different types of data, collect data, make decisions regarding the methods used to collect data, be familiar with the different steps in the research process.

STK124 (16 credits) - Introduction to Statistics II
(Department of Mathematical Statistics)
Three lectures and one three-hour practical per week and four hours of self-study per week during the second semester.
One three-hour examination paper.
The organising, graphical presentation and description of data. Elementary principles of probability. Confidence intervals, hypothesis testing, correlation, regression, contingency tables, and analysis of variance.
After successfully completed the model the student must be able to:
(a) Organise data, graphically present data and apply statistical techniques to make interpretations, calculate probabilities for different distributions, determine confidence intervals and do hypothesis tests, determine the relationship between variables, interpret the relationship and present it graphically.
(b) Have the skills to solve problems, follow the steps of the research process, make decisions regarding the statistical methods to be applied, analyse data and make logical conclusions from the results.

WTW114 (16 credits) - Calculus
(Department of Mathematics and Applied Mathematics)
Four lectures and three hours practical per week in the first semester.
One three-hour paper.
Successful learners will be able to demonstrate their skill with calculus, using mathematically logical arguments, by solving problems and by application of the theory.

Note: Learners intending to study WTW114 are advised to take grade 12 Mathematics at Higher Grade.

WTW124 (16 credits) - Algebra and differential equations
(Deptartment of Mathematics and Applied Mathematics)
Four lectures and three hours practical per week in the second semester.
One three-hour paper.
Contents: The binomial theorem. Complex numbers. Introductory linear algebra: Systems of linear equations, matrices, determinants, vectors in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \), lines and planes, Conic sections. Multi-variable functions. Partial derivatives. Elementary differential equations.
Successful learners will be able to describe the introductory theory of linear algebra, complex numbers, conic sections and differential equations, and will be able to solve problems.

WTW134 (16 credits) - Calculus
(Deptartment of Mathematics and Applied Mathematics)
Three lectures and three hours practical per week in the first semester.
One two-hour paper.
Contents: Functions, graphs, limits, continuity and the derivative. Polynomial, trigonometric, exponential and logarithmic functions. Differentiation. Critical points and local maxima and minima.
Introduction to modelling. The definite integral. Integration techniques.
Note: It is strongly recommended that a student who plans to study WTW 134 should at least have obtained a C-symbol in grade 12 standard grade Mathematics.
Successful learners will be able to demonstrate their skill with basic calculus by solving problems and by application of the theory.
Note: **WTW134 is not equivalent to WTW114.** Students who passed WTW134 must pass a special departmental examination in WTW114 in order to gain admission to certain second year mathematics modules.

WTW144 (16 credits) - Calculus and linear algebra
(Deptartment of Mathematics and Applied Mathematics)
Three lectures and three hours practical per week in the second semester.
One two-hour paper.
Contents: Further integration, elementary differential equations, systems of linear equations, matrices, complex numbers.
Successful learners will be competent with integration and with the solution of systems of linear equations.

WTW154 (16 credits) - Basic Mathematics
Three lectures and three hours practical per week in the first semester.
One two-hour paper.
Contents: Development of skills with arithmetic and mathematical calculations. Real numbers, algebraic expressions. Algebraic and graphical solution of equations. Logarithms and exponents. The use of a pocket calculator. Basic geometry and elementary trigonometry, the calculation of areas and volumes. Simple and compound interest. Grouping of data and descriptive statistics.
Learners have developed basic skills with algebraic manipulations and with mathematical techniques.

WTW164 (16 credits) - Precalculus
Three lectures and three hours practical per week in the second semester.
One two-hour paper.
Contents: Algebra overview. Functions and graphs. Algebraic, linear, quadratic and polynomial functions. Trigonometric functions and trigonometry. Exponential and logarithmic functions.
Outcome: Learners are familiar with the elementary functions and their graphs and have a good basis for a calculus module.

Note: This module gives access to WTW114.

WTW214 (16 credits) - Vector analysis
(Department of Mathematics and Applied Mathematics)
Two lectures and two hours practical per week in the first semester.
One three-hour paper.
Contents: Vector functions: limits, derivatives and integrals. Curves: parameterisation, tangent vectors, arc length. Multivariable functions: quadratic surfaces, partial derivatives, limits, continuity, differentiability, gradients and directional derivatives, the Mean Value theorem, the chain rule for partial derivatives, tangent planes. Multiple and line integrals: Theory and applications. Learners understand the theory and applications of more advanced calculus, including vector calculus, multivariable functions, line integrals and surface integrals.

WTW224 (16 credits) - Linear algebra
(Department of Mathematics and Applied Mathematics)
Two lectures and two hours practical in the second semester.
One three-hour paper.

WTW262 (8 credits) - Sequences and series
(Department of Mathematics and Applied Mathematics)
One lecture and two hours practical per week in the second semester.
One two-hour paper.
Contents: Sequences of real numbers: convergence, limits, boundedness, indeterminate forms, L'Hopital's rule. Improper integrals. Infinite series: tests for convergence, absolute and conditional convergence. Taylor series. Power series: intervals of convergence. Learners understand the basic theory of sequences and series of real numbers. They can apply the theory by determining the power series expansion and intervals of convergence of functions.

WTW314 (16 credits) - Complex analysis
(Department of Mathematics and Applied Mathematics)
Two lectures and two hours practical per week in the first semester.
One three-hour paper.

WTW324 (16 credits) - Real analysis
(Department of Mathematics and Applied Mathematics)
Two lectures and two hours practical per week in the second semester.
One three-hour paper.
Contents: Axiomatic construction of the real numbers. Sequences of real numbers. The Weierstrass-Bolzano theorem. Limits and continuity. The intermediate value theorem. The
Learners understand the basic theory of the field of real numbers. Continuity, differentiability and Riemann integrability of real functions form part of this module.

WTW334 (16 credits) - Discrete Mathematics
(Department of Mathematics and Applied Mathematics)
Two lectures and two hours practical per week in the first semester.
One two-hour paper.
Contents: Logic, method of proof, set theory, functions and relations, elementary number theory, induction, recursion, effectivity of algorithms.
Outcome: Students understand the foundation of mathematics and know when sentences are logically equivalent. Notions such as countability and infinity are mastered. Students will have enough background to study and understand the theory of algorithms.

WTW344 (16 credits) - Algebra
(Department of Mathematics and Applied Mathematics)
Two lectures and two hours practical per week in the second semester.
One two-hour paper.
Contents: Groups: semigroups, finite and infinite groups, subgroups, Lagrange's theorem, cosets, conjunction, homomorphisms. Rings: polynomials, arithmetic modulo n, integral domains, fields, Euclidian domains, ideals, homomorphisms, principal ideal domains, unique factorisation domains, factorising in $\mathbb{Q}[x]$. Geometric constructions.
Outcome: Students understand notions around certain algebraic structures such as groups, rings and fields, as well as applications thereof. They can also determine the possibility of certain geometric constructions. Furthermore, students will have enough background to study coding theory.
Annexure A: Prerequisites

<table>
<thead>
<tr>
<th>Module</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLG124</td>
<td>Min. (BLG114)</td>
</tr>
<tr>
<td>BLG144</td>
<td>BLG114</td>
</tr>
<tr>
<td>CEM124</td>
<td>CEM114 or CEM104 or CHE104</td>
</tr>
<tr>
<td>CEM144</td>
<td>CEM114 or CEM104 or CHE104</td>
</tr>
<tr>
<td>CEM214</td>
<td>(CEM114 or CEM104 or CHE104) and (CEM124 or CEM194 or CHE194 or 60% pass CEM144) and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>CEM224</td>
<td>CEM124 or CHE194 or CHE194 or 60% pass CEM144</td>
</tr>
<tr>
<td>CEM232</td>
<td>(CEM114 or CEM104 or CHE104) and (CEM124 or CEM194 or CHE194 or 60% pass CEM144) and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>CEM242</td>
<td>CEM232 and CEM214</td>
</tr>
<tr>
<td>CEM314</td>
<td>(CEM232 and CEM214 and CEM242) and (WTW124 or WTW144)</td>
</tr>
<tr>
<td>CEM324</td>
<td>CEM314</td>
</tr>
<tr>
<td>CEM334</td>
<td>(CEM232 and CEM214) and (WTW124 or WTW144)</td>
</tr>
<tr>
<td>CEM344</td>
<td>CEM224</td>
</tr>
<tr>
<td>DRK214</td>
<td>BLG114 and BLG144</td>
</tr>
<tr>
<td>DRK224</td>
<td>BLG114 and BLG144</td>
</tr>
<tr>
<td>DRK314</td>
<td>BLG114 and BLG144</td>
</tr>
<tr>
<td>DRK324</td>
<td>BLG114 and BLG144</td>
</tr>
<tr>
<td>DRK334</td>
<td>BLG114 and BLG144</td>
</tr>
<tr>
<td>DRK344</td>
<td>BLG114 and BLG144</td>
</tr>
<tr>
<td>FSK114</td>
<td>With (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK124</td>
<td>Min. (FSK114 or FSK134) and Min. (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK214</td>
<td>(FSK114 or FSK134) and (FSK124 or FSK144) and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK224</td>
<td>(FSK114 or FSK134) and (FSK124 or FSK144) and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK232</td>
<td>(With FSK214)</td>
</tr>
<tr>
<td>FSK242</td>
<td>(FSK114 or FSK134) and (FSK124 or FSK144) and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK314</td>
<td>(FSK214 or FSK216) and CEM214 and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK324</td>
<td>FSK314 or FSK316</td>
</tr>
<tr>
<td>FSK332</td>
<td>(FSK114 or FSK134) and (FSK124 or FSK144) and (WTW114 or WTW134)</td>
</tr>
<tr>
<td>FSK342</td>
<td>FSK332</td>
</tr>
<tr>
<td>FSK352</td>
<td>FSK232</td>
</tr>
<tr>
<td>FSK362</td>
<td>FSK232</td>
</tr>
<tr>
<td>PLK212</td>
<td>Min. (BLG124) or LWL114</td>
</tr>
<tr>
<td>PLK262</td>
<td>Min. (BLG124) or LWL114</td>
</tr>
<tr>
<td>PLK214</td>
<td>Min. (BLG124) or LWL114</td>
</tr>
<tr>
<td>PLK224</td>
<td>Min. (BLG124) or LWL114</td>
</tr>
<tr>
<td>PLK314</td>
<td>BLG124 or LWL114</td>
</tr>
<tr>
<td>PLK324</td>
<td>BLG124 or LWL114</td>
</tr>
<tr>
<td>PLK334</td>
<td>BLG124 or LWL114</td>
</tr>
<tr>
<td>PLK344</td>
<td>BLG124 or LWL114</td>
</tr>
<tr>
<td>RIS134</td>
<td>(With BRS111)</td>
</tr>
<tr>
<td>RIS121</td>
<td>BRS111 or BAS111 or RKG131 or RKG141</td>
</tr>
<tr>
<td>RIS144</td>
<td>RIS134</td>
</tr>
<tr>
<td>RIS222</td>
<td>RIS144</td>
</tr>
<tr>
<td>RIS224</td>
<td>RIS236</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>RIS236</td>
<td>RIS144</td>
</tr>
<tr>
<td>RIS314</td>
<td>RIS224</td>
</tr>
<tr>
<td>RIS324</td>
<td>RIS224</td>
</tr>
<tr>
<td>RIS334</td>
<td>RIS222 and RIS236</td>
</tr>
<tr>
<td>RIS344</td>
<td>RIS222 and RIS236</td>
</tr>
<tr>
<td>WTW114</td>
<td>Grade 12 Mathematics (HG) D or WTW164</td>
</tr>
<tr>
<td>WTW134</td>
<td>Grade 12 Mathematics (HG) E or (SG) C or WTW164</td>
</tr>
<tr>
<td>WTW124</td>
<td>Min. (WTW114)</td>
</tr>
<tr>
<td>WTW144</td>
<td>Min. (WTW114) or WTW134</td>
</tr>
<tr>
<td>WTW164</td>
<td>Grade 12 Mathematics or WTW154</td>
</tr>
<tr>
<td>WTW214</td>
<td>(WTW114 and Min. (WTW124))</td>
</tr>
<tr>
<td>WTW236</td>
<td>Min. (WTW114) or WTW134</td>
</tr>
<tr>
<td>WTW252</td>
<td>Min. (WTW124) or WTW144</td>
</tr>
<tr>
<td>WTW224</td>
<td>WTW124</td>
</tr>
<tr>
<td>WTW244</td>
<td>WTW124 or WTW144</td>
</tr>
<tr>
<td>WTW262</td>
<td>WTW114</td>
</tr>
<tr>
<td>WTW282</td>
<td>WTW124 and (With WTW224)</td>
</tr>
<tr>
<td>WTW314</td>
<td>WTW124 and WTW214 and Min. (WTW262)</td>
</tr>
<tr>
<td>WTW334</td>
<td>WTW124</td>
</tr>
<tr>
<td>WTW354</td>
<td>WTW124 and Min. (WTW262)</td>
</tr>
<tr>
<td>WTW374</td>
<td>WTW124 and WTW252</td>
</tr>
<tr>
<td>WTW324</td>
<td>WTW214 and Min. (WTW262)</td>
</tr>
<tr>
<td>WTW344</td>
<td>Min. (WTW224)</td>
</tr>
<tr>
<td>WTW364</td>
<td>WTW252 and Min. (WTW214)</td>
</tr>
<tr>
<td>WTW384</td>
<td>WTW244</td>
</tr>
</tbody>
</table>
Honours Degrees (NQF level 7)

INFORMATION

1. The Honours Degree is offered at the Qwaqwa Campus in the following fields of study:
 Physics, Polymer Science and Zoology.

2. Departments may prescribe additional modules in terms of general regulation A 56(c).

3. Honours students who take more than one year to complete the degree, must register annually according to the regulations of the particular year.

4. Departmental Prerequisites/Requirements

 A department may set prerequisites/requirements as mentioned below and the final decision regarding the application thereof rests with the Departmental Chairperson.

5. Module codes

 It should be noted that the numerical part of the module codes for honours modules does not consistently have the same meaning as that of undergraduate modules. The alphabetical part specifies the module name. The number 6 indicates that it is an honours module, while the second and third numbers are simply linked to the particular topic. It should thus be established in consultation with the Departmental Chairperson when the examination for a specific module will take place.

REGULATIONS

Reg. D28 - Admission

(a) The general regulations in respect of Honours degrees are with the necessary modifications applicable to this Faculty.

(b) In addition to the provisions of the general regulations in respect of Honours degrees, a student must comply with the particular regulations of the Faculty.

(c) Students also must apply to the Departmental Chairperson for admission to the Honours degree.

Reg. D29 - Presentation

The study material for the Honours degree is presented in the form of either semester modules or year modules.

Semester modules are selected in the following fields of study:
Physics, Polymer Science, Zoology.
The following Honours Degrees are offered by the Faculty at the Qwaqwa Campus:

1. **Chemistry**

 After successful completion of the learning programme for the Honours degree as student show evidence of the acquisition of sophisticated theoretical subject knowledge as well as understanding and insight of the Chemistry discipline. Also the acquisition and development of competencies with respect to experimental procedures and techniques, critical appreciation of literature and independent analysis of information and observed experimental data in support of conclusions and deductions.

 1.1. General requirements

 The student must have achieved an average mark of at least 60% for (CEM314 + CEM334 + CEM324 + CEM344) to qualify for admission to the honours degree. The Departmental Management may deviate from the above conditions and grant permission for admission to the Honours degree in exceptional cases. The programme commences in middle January.

 1.2. Curriculum

 Polymer Science - Study code 4514

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP614</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>CMP634</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>CMP654</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>CMP674</td>
<td>Analytical Chemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP624</td>
<td>Polymer Chemistry</td>
</tr>
<tr>
<td>CMP644</td>
<td>Polymer Characterising</td>
</tr>
<tr>
<td>CMP664</td>
<td>Physical Polymer Science</td>
</tr>
<tr>
<td>CMP684</td>
<td>Applied Polymer Science</td>
</tr>
</tbody>
</table>

2. **Zoology - Study code 4516**

 2.1. General requirements

 For the Honours degree in Zoology DRK614, DRK622, DRK632, DRK642 and DRK692 are compulsory, whilst, in concurrence with the discipline head, three other modules must be chosen from the list below. An examination of three hours is written in each of the choice modules in DRK632. DRK614 will be continuously evaluated and an internal examination will be written, whilst for DRK622 and DRK642 a written report and oral presentation is required.

 2.2. Curriculum

<table>
<thead>
<tr>
<th>Compulsory modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRK614</td>
<td>Research Techniques, Scientific Methodology and Scientific Communication</td>
</tr>
<tr>
<td>DRK622</td>
<td>Quantitative Ecology</td>
</tr>
<tr>
<td>DRK632</td>
<td>Biodiversity (Evolution and Biogeography)</td>
</tr>
<tr>
<td>DRK642</td>
<td>The Environment</td>
</tr>
</tbody>
</table>
Choice Modules (Select 3)

- DRK654 - Veterinary Ectoparasitology 16
- DRK664 - Animal Behaviour\(^1\) / Veterinary Endoparasitology\(^2\) 16
- DRK674 - Aquatic Parasitology / Limnology 16
- DRK684 - African Ornithology \(^1\) / Immunology \(^2\) 16
- DRK694 - Capita Selecta (e.g. Herpetology\(^2\), Population genetics\(^2\), Conservation ecology\(^1\), Aquatic ecology\(^1\), Paleontology\(^1\)) 16
- XXX000 - Related module preferably in Faculty of Natural and Agricultural Sciences. Module choice subject to approval and same number of credits 16

1. Module offered only at Bloemfontein Campus.
2. Module offered only at the Qwaqwa Campus.

3. Physics - Study code 4518

This programme will not necessarily be presented every year.

A student must have achieved an average mark of at least 60% in (FSK314 + FSK332 + FSK352 + FSK324 + FSK342 + FSK362) to qualify for admission to the Honours degree. The Departmental Chairperson may grant permission for admission to the Honours degree in exceptional cases. The programme commences in middle January and students must apply for admission with the Departmental Chairperson before that date.

The curriculum is composed in consultation with the Departmental Chairperson from the modules listed below. The complete curriculum must consist of at least eight modules, plus the practical module FSK692 which is compulsory. Each module must be independently passed.

The degree can be offered over more than one year. Postgraduate modules from other subject disciplines can also be offered in consultation with the Departmental Chairperson.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSK601 - Quantum Mechanics*</td>
<td>16</td>
</tr>
<tr>
<td>FSK602 - Solid State Physics I*</td>
<td>16</td>
</tr>
<tr>
<td>FSK603 - Research Techniques*</td>
<td>16</td>
</tr>
<tr>
<td>FSK604 - Mathematical Methods of Physics</td>
<td>16</td>
</tr>
<tr>
<td>FSK605 - Solid State Physics II*</td>
<td>16</td>
</tr>
<tr>
<td>FSK606 - Semi-conductors*</td>
<td>16</td>
</tr>
<tr>
<td>FSK607 - Statistical Physics</td>
<td>16</td>
</tr>
<tr>
<td>FSK608 - Electrodynamics</td>
<td>16</td>
</tr>
<tr>
<td>FSK609 - Materials Science I*</td>
<td>16</td>
</tr>
<tr>
<td>FSK610 - Materials Science II*</td>
<td>16</td>
</tr>
<tr>
<td>FSK611 - Electronics*</td>
<td>16</td>
</tr>
<tr>
<td>FSK612 - Astrophysics</td>
<td>16</td>
</tr>
<tr>
<td>FSK613 - Capita Selecta I</td>
<td>16</td>
</tr>
<tr>
<td>FSK614 - Capita Selecta II</td>
<td>16</td>
</tr>
<tr>
<td>FSK692 - Research essay*</td>
<td>32</td>
</tr>
</tbody>
</table>

Not all these topics are necessarily offered in a given year.

* Students wanting to do an M.Sc. in surface physics are strongly recommended to register for these courses.
INFORMATION

The Magister Scientiae is awarded in the following fields of study:

Mathematics, Physics, Polymer Science and Zoology.

• Students enrol for the Magister Scientiae by dissertation, under the code 4792.

Module codes

In cases where an M.Sc. degree consists only of a dissertation (at least 120 credits), the alphabetical part which refers to the module code is followed by the number 700.

In cases where the M.Sc. degree consists of both course work and research related assignments the alphabetical part refers to the module name and the number 7 to the fact that it is a Master's level module. It must be noted that the second and third numbers do not always have the same meaning as that of undergraduate modules.

REGULATIONS

Reg. D31 - Admission

(a) Candidates have to apply to the Departmental Chairperson for admission to Master's degree studies.

(b) The general regulations of the University in respect of Master's degrees apply with appropriate modification to this Faculty.

(c) In addition to the provisions of the general regulations for Master's degrees, a candidate must comply with the regulations of this Faculty.

(d) In consultation with the supervisor and on the recommendation of the supervisor(s), the Departmental Chairperson and the Research Committee of the Faculty, a candidate who has been admitted for the Master's degree in terms of Reg. A80 may, after a study and registration period of at least one year, apply to be allowed to continue his/her studies at the Ph.D. degree level. Following admission to the Ph.D. degree, at least two years must elapse before the Ph.D. degree can be conferred. The period of study for the degree will therefore be at least three years.

The M.Sc. degree may be conferred upon a candidate if:

(i) The candidate withdraws his candidature for the Ph.D. degree, or

(ii) His candidature for the Ph.D. degree is cancelled, or

(iii) The candidate does not meet the requirements for the doctor's degree.

Reg. D32 - Pass requirements

(a) Pass requirements

In addition to the general regulations, the following also applies:

The Departmental Chairperson will, in respect of each candidate, submit to the Administration the marks obtained for the examination papers as required, as well as a statement that the candidate has met all the departmental provisions. The conferment of the Master's degree will be subject to this.
(b) Relative weight per question paper
The examination papers and dissertation carry relatively the same weight, unless otherwise stated by the Departmental Chairperson.

Reg. D33 - Requirement(s)

In cases where a dissertation is required, a candidate must do research on an approved topic for at least two semesters, in consultation with the Departmental Chairperson, in preparation for a dissertation that shall be submitted as the only requirement for the degree.

The candidate will present at least one seminar/research report in each year in accordance with departmental regulations.

(a) Chemistry

After successful completion of the learning programme for the M.Sc. degree the candidate will be able to provide evidence of advanced study and research characterised by intellectual independence and advanced knowledge of a specialisation area in the subject, as well as accurate evaluation of his/her own results and as well as that of others by production of a thesis which places his/her research in broader context and which is capable of withstanding international intellectual scrutiny.

(i) Polymer Science - Study code 4701

Admission to the option is a B.Sc. Honours degree in Polymer Science with study code 4514.

A dissertation (subject code CMP700) is required for the conferment of the degree. For at least two semesters a candidate does research work on an approved topic in the research area Polymer Science of the department and a comprehensive dissertation in which the research results are thoroughly presented, has to be submitted. An oral examination can be required after submission of the dissertation.

Information
Candidates from learning programmes 4513 and 4515 who wish to follow this option have to consult the Departmental Chairperson as it can be required that additional modules have to be taken.

(b) Physics - Study code 4792

A dissertation (FSK700) (120 credits): In consultation with the Departmental Chairman a candidate must do research on an approved topic for at least two semesters, in preparation for a dissertation that will be submitted as the only requirement for the degree. An oral examination may be required which will be arranged with the candidates after the dissertation has been submitted.

(c) Zoology - Study code 4700
Doctor's Degrees

The following Doctor's degree is offered at the Qwaqwa Campus:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Abbreviation</th>
<th>Study code</th>
<th>Course code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philosophiae Doctor</td>
<td>Ph.D.</td>
<td>4920</td>
<td>900</td>
</tr>
</tbody>
</table>

The degree of Philosophiae Doctor is offered in the following fields:

Mathematics, Physics, Polymer Science and Zoology.

REGULATIONS

Reg. D47 - Admission

(a) The general regulations regarding doctor's degrees apply to this Faculty *mutatis mutandis*.

(b) Candidates have to apply to the Departmental Chairperson for admission to the Doctor's degree study.

Reg. D48 - Requirements

A candidate does research for at least four semesters on an approved topic selected in consultation with the Departmental Chairperson in preparation of a thesis which serves as the only requirement for the degree. The candidate will present at least one seminar/research report in each year of study in accordance with departmental regulations.
Postgraduate Syllabi

DRK614 (16 credits) - Research Techniques, Scientific Methodology and Scientific Communication
After completion of this module the student will be familiar with selected techniques applicable in Zoology, as well as accessing scientific literature, organizing and evaluating scientific information, compilation of information according to scientific standards and format, and written and oral scientific communication skills.

DRK622 (8 credits) - Quantitative Ecology
This module will be jointly presented by lecturers of Zoology & Entomology and Environmental Management and upon completion students will be familiar with the measurement of the biotic components of an ecosystem.

DRK632 (8 credits) - Biodiversity (Evolution & Biogeography)
Upon completion of this module students will be familiar with evolutionary change as the cornerstone of biological sciences.

DRK642 (8 credits) - The Environment
This module will be jointly presented by lecturers of Zoology & Entomology and Environmental Management and will familiarize students in the latest developments regarding environmental sustainability and the role of man in this regard.

DRK654 (16 credits) - Veterinary Ectoparasitology
The course focuses on the occurrence, biology and control of selected ectoparasites associated with domesticated animals and pets. Specific attention will be given to the role of these ectoparasites in the transmission of pathogens to the animal hosts and humans. The course included both theoretical and practical components.
This course will contribute to the student's ability to following a career in research, developing and marketing divisions of pharmaceutical companies. It could further contribute to the ability of a student to become involved in contract research.

DRK664 (16 credits) - Animal Behavior
A holistic approach is followed in order to understand and explain vertebrate animal behaviour under natural conditions. Attention is given to the basic principals of ethology, ecology and evolution. A sound knowledge of behavioural studies prepares students for a career in nature conservation, agriculture, academic institutions and for consulting work.

DRK674 (16 credits) - Aquatic Parasitology
This course deals with water borne parasites, which spend at least a part of their lifecycle in water. It includes taxonomy, ecology, pathology, parasite host associations, epizootiology and control of parasites.

DRK684 (16 credits) - African Ornithology
A comprehensive course dealing with the occurrence, distribution and behaviour of birds in an African context. Special attention will be given to factors regulating distribution and behaviour of birds. The course is a valuable addition to an ecological background, forming the basis for a wide spectrum of disciplines.
DRK692 (32 credits) - Research Essay
The research project extends over the whole year. An oral examination and project report is required. The student completes a project under the supervision of a supervisor and is introduced to problem identification, hypothesizing, planning, executing, analyzing, interpreting and communication of results. The independence and scientific insight that is developed here provides opportunities for further post-graduate studies.

XXX000 - Advanced related module
This module is selected from an applicable course outside Zoology and offers the opportunity for a sensible supplement to the field of study of the student.
RULES FOR PIPELINE STUDENTS OF THE UNIVERSITY OF THE NORTH - QWAQWA CAMPUS (UNIQWA)

C1 - Degrees
The following degrees are granted in the faculty:

Bachelor of Science B.Sc.
Bachelor of Science Honores B.Sc. Honores.
Master of Science M.Sc.
Doctor of Philosophy Ph.D.

THE DEGREE BACHELOR OF SCIENCE (B.Sc.)

C2 - Admission and registration
2.1 These rules only apply to students that were registered prior to 2003 at the University of the North (Qwaqwa Campus). New students registered since 2003 will register according to the rules of the University of the Free State.

2.2 Every pipeline student shall follow an approved curriculum for the period prescribed for the degree as indicated under rule C7 below.

C3 - Duration of Curriculum and Subjects
This qualification is offered at NQF level 6 and the curriculum extends over at least three years and is composed of modules in the following subjects:

Biology - BIO
Botany - BOT
Chemistry - CHE
Computer Science - CSC
English - ENL
Geography - GEO
Mathematics - MAT
Physics - PHY
Statistical Methods - STA
Zoology - ZOO

C4 - Composition of Curriculum
4.1 A minimum of 360 credit units should be accumulated to qualify for the B.Sc. degree according to the degree structures as outlined in C7.

4.2 Core and Foundation courses are compulsory and elective courses will chosen from the listed elective courses. If elective courses are not specified, they may be chosen from any course offered by the University.
C5 - Repetition of Modules

Modules which may be repeated will include any module:

5.1 Which the candidate previously failed for his current degree, or for another degree of the university or for a degree of another university.

5.2 Which a student previously obtained for non-degree purposes.

C6 - Determination of Final Year of Study

A student shall be deemed to be in his final year of study of a three-year degree when he has enrolled for the final year modules.

C7 - Degree structures

Credit units for modules are indicated in brackets

B.Sc. (Botany)
Study code: 4355 (UNIQWA 000085)

<table>
<thead>
<tr>
<th>Year</th>
<th>Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
</tr>
<tr>
<td>1</td>
<td>Compulsory</td>
<td>BIO111 (8) + 112 (8)</td>
<td>BIO121 (8) + 122 (8)</td>
</tr>
<tr>
<td></td>
<td>Biology</td>
<td>CHE111 (16)</td>
<td>CHE121 (16)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory</td>
<td>BOT211 (10) + 212 (10)</td>
<td>BOT221 (10) + 222 (8) + 223 (2)</td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>ZOO211 (10) + 212 (10)</td>
<td>ZOO221 (10) + 222 (10)</td>
</tr>
<tr>
<td></td>
<td>Zoology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory</td>
<td>GEO111 (15)</td>
<td>GEO121 (15)</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td>CHE211 (10) + 212 (10)</td>
<td>CHE221 (10) + 222 (10)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compulsory</td>
<td>BOT311 (15) + 312 (15)</td>
<td>BOT321 (15) + 322 (15)</td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>STA111 (15)</td>
<td>STA121 (15)</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>CHE311 (15) + 312 (15)</td>
<td>CHE321 (15) + 322 (15)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>ZOO311 (15) + 312 (15)</td>
<td>ZOO321 (15) + 322 (15)</td>
</tr>
<tr>
<td></td>
<td>Zoology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. (Zoology)

Study code: 4316 (UNIQWA 000037)

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory Disciplines</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biology</td>
<td>BIO111 (8) + 112 (8)</td>
<td>BIO121 (8) + 122 (8)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CHE111 (16)</td>
<td>CHE121 (16)</td>
</tr>
<tr>
<td></td>
<td>Practical English</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td>GEO111 (15)</td>
<td>GEO121 (15)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT111 (15), 112 (15)</td>
<td>MAT121 (15), 122 (15)</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>PHY111 (5), 112 (5), 113 (5)</td>
<td>PHY121 (5), 122 (5), 123 (5)</td>
</tr>
<tr>
<td>2</td>
<td>Zoology</td>
<td>ZOO111 (10) + 212 (10)</td>
<td>ZOO221 (10) + 222 (10)</td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>BOT211 (10), 212 (10)</td>
<td>BOT221 (10), 222 (8), 223 (2)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CHE211 (10), 212 (10)</td>
<td>CHE221 (10), 222 (10)</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td>GEO111 (8)</td>
<td>GEO221 (8)</td>
</tr>
<tr>
<td>3</td>
<td>Zoology</td>
<td>ZOO111 (15) + 312 (15)</td>
<td>ZOO221 (15) + 322 (15)</td>
</tr>
<tr>
<td></td>
<td>Statsitics</td>
<td>STA111 (15)</td>
<td>STA211 (15)</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td>CSC112 (8)</td>
<td>CSC121 (8)</td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>BOT311 (15), 312 (15)</td>
<td>BOT321 (15), 322 (15)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CHE311 (15), 312 (15)</td>
<td>CHE321 (15), 322 (15)</td>
</tr>
</tbody>
</table>

Enough modules to earn, at least, another 32 credits from:
- Geography
- Mathematics
- Physics

Enough modules to earn, at least, another 80 credits from:
- Botany
- Chemistry
- Geography

Enough modules to earn, at least, another 22 credits from:
- Botany
- Chemistry

B.Sc. (Chemistry)

Curriculum Number: 4315 (UNIQWA 000036)

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory Disciplines</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemistry</td>
<td>CHE111 (16)</td>
<td>CHE121 (16)</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>PHY111 (5) + 112 (5) + 113 (5)</td>
<td>PHY121 (5) + 122 (5) + 123 (5)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT111 (20)</td>
<td>MAT211 (20)</td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>CSC112 (8)</td>
<td>CSC121 (8)</td>
</tr>
<tr>
<td></td>
<td>Practical English</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>CHE211 (10) + 212 (10)</td>
<td>CHE221 (10) + 222 (10)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>MAT212 (20)</td>
<td>MAT221 (20)</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>PHY211 (5) + 212 (5) + 213 (5) + 214 (5)</td>
<td>PHY221 (5) + 222 (5) + 223 (5) + 224 (5)</td>
</tr>
<tr>
<td>2</td>
<td>Chemistry</td>
<td>CHE311 (20), 312 (20)</td>
<td>CHE321 (20), 322 (20)</td>
</tr>
</tbody>
</table>

Enough modules to earn, at least, another 11 credits from any discipline

Enough modules to earn, at least, another 40 credits from any discipline
B.Sc. (Computer Science)
Study code: 4317 (UNIQWA 000038)

<table>
<thead>
<tr>
<th>Year</th>
<th>Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compulsory</td>
<td>CSC111 (15)</td>
<td>CSC121 (15) + 122 (15)</td>
</tr>
<tr>
<td></td>
<td>Computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer</td>
<td>CSC112 (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT111 (15) + 112 (15)</td>
<td>MAT121 (15) + 122 (15)</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>CSC211 (10) + 212 (10)</td>
<td>CSC221 (10) + 222 (10)</td>
</tr>
<tr>
<td></td>
<td>Computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT211 (20)</td>
<td>MAT222 (20)</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enought</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to earn,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at least,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>another</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from any</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>discipline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>CSC311 (15) + 312 (15)</td>
<td>CSC321 (15) + 322 (15)</td>
</tr>
<tr>
<td></td>
<td>Computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enought</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to earn,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at least,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>another</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from any</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>discipline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.Sc. (Mathematics)
Study code: 4348 (UNIQWA 000060)

<table>
<thead>
<tr>
<th>Year</th>
<th>Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compulsory</td>
<td>MAT111 (15) + 112 (15)</td>
<td>MAT121 (15) + 122 (15)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer</td>
<td>CSC112 (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enough</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to earn,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at least,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>another</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from:</td>
<td>CHE111 (16)</td>
<td>CHE121 (16)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>PHY111 (5), 112 (5), 113 (5)</td>
<td>PHY121 (5), 122 (5), 123 (5)</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td>STA111 (15)</td>
<td>STA121 (15)</td>
</tr>
<tr>
<td>2</td>
<td>Compulsory</td>
<td>MAT211 (20) + 212 (20)</td>
<td>MAT221 (10) + 222 (20)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enought</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to earn,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at least,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>another</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from any</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>discipline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory</td>
<td>MAT311 (20) + 312 (20)</td>
<td>MAT321 (20) + 322 (20)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enought</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to earn,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at least,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>another</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from any</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>discipline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. (Physics)
Study code: 4349 (UNIQWA 000061)

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physics</td>
<td>PHY111 (5) + 112 (5) + 113 (5)</td>
<td>PHY121 (5) + 122 (5) + 113 (5)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT111(15) + 112(15)</td>
<td>MAT121(15) + 122(15)</td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>CSC111 (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical English</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Physics</td>
<td>PHY211 (5) + 212 (5) + 213 (5) + 214 (5)</td>
<td>PHY221 (5) + 222 (5) + 223 (5) + 224 (5)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT211(20)</td>
<td>MAT221 (20)</td>
</tr>
<tr>
<td></td>
<td>Computer Science</td>
<td></td>
<td>CSC121 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enough modules to earn, at least, another 25 credits from any discipline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Compulsory Physics</td>
<td>PHY311 (8) + 312 (8) + 313 (8) + 314 (8)</td>
<td>PHY321 (8) + 322 (8) + 323 (8) + 324 (8)</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
<td>MAT311 (20)</td>
<td>MAT321 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enough modules to earn, at least, another 16 credits from any discipline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.Sc. (Environmental Science)
Study code: 4369 (UNIQWA 2005)

<table>
<thead>
<tr>
<th>Year</th>
<th>Compulsory Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biology</td>
<td>BIO111 (8) + 112 (8)</td>
<td>BIO121 (8) + 122 (8)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CHE111 (16)</td>
<td>CHE121 (16)</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td>GEO111 (15)</td>
<td>GEO121 (15)</td>
</tr>
<tr>
<td></td>
<td>Business Management</td>
<td>BUS111 (12)</td>
<td>BUS121 (12)</td>
</tr>
<tr>
<td></td>
<td>Practical English</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Geography</td>
<td>GEO211 (8) + 212 (8)</td>
<td>GEO221 (8) + 222 (8)</td>
</tr>
<tr>
<td></td>
<td>Earth Science</td>
<td>EAS211 (15) + 212 (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Science</td>
<td>ENV211 (15)</td>
<td>ENV221 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enough modules to earn, at least, another 28 credits from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Botany</td>
<td>BOT211 (10), 212 (10)</td>
<td>BOT121 (10), 222 (8), 223 (2)</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CHE211 (10), 212 (10)</td>
<td>CHE221 (10), 222 (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Earth Science</td>
<td>EAS311 (15) + 312 (15) + 314 (8) + 318 (8)</td>
<td>ENV321 (15) + 322 (15) + 323 (15) + 324 (8)</td>
</tr>
<tr>
<td></td>
<td>Environmental Science</td>
<td>EAS211 (15) + 314 (8) + 318 (8)</td>
<td>GEO211 (15)</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Literacy</td>
<td>CSC112 (8)</td>
<td>RES324 (8)</td>
</tr>
<tr>
<td></td>
<td>Internship</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Year 1

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>GEO111 (15)</td>
<td>GEO121 (15)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MAT111 (15)</td>
<td></td>
</tr>
<tr>
<td>Computer Literacy</td>
<td>CSC112 (8)</td>
<td></td>
</tr>
<tr>
<td>Practical English</td>
<td>ENL111 (12)</td>
<td>ENL121 (12)</td>
</tr>
<tr>
<td>Enough modules to earn, at least, another 43 credits from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>BIO111 (8), 112 (8)</td>
<td>BIO121 (8), 122 (8)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>CHE111 (16)</td>
<td>CHE121 (16)</td>
</tr>
<tr>
<td>Physics</td>
<td>PHY111 (5), 112 (5), 113 (5)</td>
<td>PHY121 (5), 122 (5), 123 (5)</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>MAT121 (15)</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>GEO211 (8)</td>
<td>GEO221 (8)</td>
</tr>
<tr>
<td>Earth Science</td>
<td>EAS211 (15) + 212 (15)</td>
<td></td>
</tr>
<tr>
<td>Enough modules to earn, at least, another 74 credits from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botany</td>
<td>BOT211 (10), 212 (10)</td>
<td>BOT221 (10), 222 (8), 223 (2)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>CHE211 (10), 212 (10)</td>
<td>CHE221 (10), 222 (10)</td>
</tr>
<tr>
<td>Physics</td>
<td>PHY211 (5), 212 (5), 213 (5), 214 (5)</td>
<td>PHY221 (5), 222 (5), 223 (5), 224 (5)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MAT211(20), 212(20)</td>
<td>MAT221(20), 222(20)</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Science</td>
<td>EAS311 (15) + 312 (15) + 313 (15) + 314 (8) + 315 (8)</td>
<td>EAS321 (15) + 322 (15) + 323 (15) + 324 (8) + 325 (8)</td>
</tr>
</tbody>
</table>

C8 - Practicals

8.1 Students in Botany, Chemistry, Computer Science, Geography, Physics and Zoology courses must do practical work as part of their course-work and must hand in to the departments concerned their properly completed practical record books before the final assessment takes place.

8.2 A student shall not be allowed to sit for an examination in any particular course unless he has attended at least 75% of the official practicals, and at least 75% of the tutorials for the courses in Mathematics and Statistical Methods.

C9 - Weight of Theory and Practical Marks

The weight of the theory and practical marks in the determination of the semester mark shall be that appearing in the syllabi of the various courses.

C10 - Calculation of Final Marks

The semester mark and the examination mark shall each contribute 50% of the final pass mark, unless otherwise stated in the syllabi.
SYLLABI

BIO111 - Fundamentals of Biology (credit units: 8)
Cytology; Cell division; Introductory genetics; Introductory evolution; Speciation.
Lectures: 4 hours per week for ½ semester
Practicals: 3 hours per week for ½ semester
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BIO112 - The Lower and Higher Kingdoms (credit units: 8)
Lectures: 4 hours per week for ½ semester
Practicals: 3 hours per week for ½ semester
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BIO121 - Environmental Studies 1 (credit units: 8)
The environment; Ecology and ecosystems; Population studies; Human impacts.
Lectures: 4 hours per week for ½ semester
Practicals: 3 hours per week for ½ semester
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BIO122 - Environmental Studies 2 (credit units: 8)
Energy studies; Natural resources; Pollution; Future issues.
Lectures: 4 hours per week for ½ semester
Practicals: 3 hours per week for ½ semester
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT211 - Introduction to Plant Systematics (credit units: 10)
Introduction to the structure, classification and importance of viruses. The structure, classification and importance of bacteria and cyanobacteria.
The structure, classification and economic importance of the fungi.
Lectures: 2 hours per week
Practicals: 4 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT212 - Systematics of the Lower Plants (credit units: 10)
The structure, classification and relationships of the algae, mosses and ferns.
Lectures: 2 hours per week
Practicals: 4 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)
BOT221 - Systematics of the seed plants (credit units: 10)
The structure, classification and relationships of the gymnosperms and angiosperms.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT222 - Anatomy of vascular plants (credit units: 8)
The internal structure of the stems, leaves and roots of ferns, gymnosperms and angiosperms.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT223 - Economic Botany (credit units: 2)
An introduction to botanical aspects of the more important economic plants of the world.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT311 - Plant Physiology (credit units: 15)
Nutrition, mineral absorption, mineral transport, growth and development regulators, photomorphogenesis, tropisms and nastic movements, growth and temperature, photoperiodism.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT312 - Biotechnology (credit units: 15)
In vitro culture: theory and practice.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

BOT321 - Terrestrial Ecology (credit units: 15)
A study of the interrelationships among plants and between plants, and those biotic and abiotic factors of the environment influencing them.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)
BOT322 - Phytogeography (credit units: 15)
The vegetation of the major biomes of the world. The flora and vegetation of the biomes of South Africa.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE111 - Introductory General Chemistry (credit units: 16)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 3 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE121 - General and Basic Organic Chemistry (credit units: 16)
Solutions and solubility. Chemical equilibrium. Introduction to electro-chemistry. Introduction to nuclear chemistry. Structure and nomenclature of organic compounds. Reactions of the hydrocarbons, substituted hydrocarbons and carbonyl compounds.
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 3 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE211 - Analytical Chemistry (credit units: 10)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE212 - Inorganic Chemistry (credit units: 10)
Hybridisation and geometry of molecules. Solid state chemistry Main group elements. d-block elements. Introduction to coordination chemistry.
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)
CHE221 - Organic Chemistry (credit units: 10)
Aromatic compounds: structure, reaction and mechanisms (electrophilic aromatic substitution, nucleophilic aromatic substitution, oxidations and other reactions). Heterocyclic compounds: structure and mechanisms. Introduction to macromolecular compounds: natural and synthetic polymers.
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE222 - Physical Chemistry (credit units: 10)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE311 - Advanced Analytical Chemistry (credit units: 20)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE312 - Advanced Inorganic Chemistry (credit units: 20)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CHE321 - Advanced Organic Chemistry (credit units: 20)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

- 72 -
CHE322 - Advanced Physical Chemistry (credit units:20)
Lectures: 3 hours per week
Tutorials: 1 hour per week
Practicals: 5 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC111 - Problem solving with computers (credit units:15)
Using a computer; Analysing problems; Solving problems with computers; Introduction to a modern programming language; Compiling and running a program; Practical applications in a programming language.
Lectures: 4 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 50%, Practicals 50%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC112 - Computer Literacy (credit units: 8)
Application software; Personal productivity tools; Word processing; Spreadsheets; Databases; Practical applications
Lectures: 2 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 50%, Practicals 50%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC121 - Object Oriented Programming (credit units:15)
Designing with classes; Ingredients of classes; Selection; Repetition; Compound data; Pointers; Organizing and controlling classes; Inheritance; Working with classes; Practical applications in a programming language.
Lectures: 2 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 50%, Practicals 50%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC122 - Impact of Information Technology on Society (credit units: 15)
Information technology as a tool for the design of solutions in organizations and society; Practical applications.
Lectures: 2 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 50%, Practicals 50%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC211 - Computer Operating Systems (credit units: 10)
Computer system structure; I/O structures; Operating system structures; Processes; CPU scheduling; Process synchronization; Deadlocks; Memory management; Virtual memory; File-system interface; Practical applications.
Lectures: 2 hours per week
Practicals: 4 hours per week

Calculation of semester mark: Theory 50%, Practicals 50%

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC212 - Computer Hardware (credit units: 10)
Architecture of a computer; Hardware; Memory; Registers; Busses; Practical applications in a programming language.

Lectures: 2 hours per week
Practicals: 4 hours per week

Calculation of semester mark: Theory 50%, Practicals 50%

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC221 - Data structures and Algorithms (credit units: 10)
Program design and algorithms; Stacks and recursion; Queues; Lists; Searching; Sorting; Binary trees; Practical applications in a programming language.

Lectures: 2 hours per week

Calculation of semester mark: Theory 50%, Practicals 50%

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC222 - Data Base Systems (credit units: 10)
An overview of database systems; Architecture for a database system; Relational databases; Relational data integrity. Functional dependencies; Normalization; Practical applications.

Lectures: 2 hours per week
Practicals: 4 hours per week

Calculation of semester mark: Theory 50%, Practicals 50%

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC311 - Software Engineering (credit units: 15)
Software design; Implementation; Testing; Practical applications.

Lectures: 2 hours per week
Practicals: 4 hours per week

Calculation of semester mark: Theory 50%, Practicals 50%

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC312 - Computer Networks (credit units: 15)
Network architectures and topologies; Introduction to popular network operating systems; File servers and workstation hardware; Practical applications.

Lectures: 2 hours per week
Practicals: 4 hours per week

Calculation of semester mark: Theory 50%, Practicals 50%

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC321 - Computer Information Systems Management (credit units: 15)
Information system management; Basic programming principles; An extensive project.

Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 50%, Practicals 50%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

CSC322 - Trends in Information Technology (credit units: 15)
Technology; Software development; organizations and the role of IT staff; Programming languages; Operating systems; Networks; Artificial intelligence; Micro computers; Super computers; Practical applications.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 50%, Practicals 50%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

EAS211 - Earth Science Systems (credit units: 15)
Selected themes in Earth Sciences: the atmosphere as system, mineral and mineral resources, plate tectonics, Principles of Soil Science: refer to their origin and formation, physical and chemical properties of soil, Soil classification and survey, Physical principles of erosion, nature of erosion, Environmental problems and conservation
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS212 - General Hydrology 1 (credit units: 15)
Applied meteorology in terms of weather systems, Classification and their effects on the environment, including the hydrologic cycle, running water, stream erosion and sediment transport, Applied hydrology with reference to predicting and controlling of floods
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

AES213 - Introduction to Plant Systematics (credit units: 20)
Principles of plant systematics, History of classification
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS311 - Biogeography (credit units: 15)
Earth Systems Sciences, The earth’s inhabitants and the ecosystem related to water, soils and geology
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

- 75 -
EAS312 - Soil Conservation and Management (credit units: 15)
Indigenous principles of sustainable soil conservation in Africa, Land evaluation systems, Eco-logical aspects of evaluation, conservation, soil management systems, conservation economics, soil degradation and restoration
Lectures: 3 hours per week
Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS313 - General Meteorology 2 (credit units: 15)
Atmospheric circulation, humidity, clouds and precipitation
Lectures: 3 hours per week
Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS314 - Introduction to Research Methods (credit units: 8)
Research proposals, statements of research problem, hypotheses, research designs, methodology and reports

EAS315 - Land-use Planning (credit units: 8)
Indigenous land-use, impact assessment of land-use processes
Lectures: 3 hours per week
Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS321 - General Hydrology 2 (credit units: 15)
Groundwater and problems associated with groundwater withdrawal and contamination
Lectures: 3 hours per week
Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS322 - Hydrological Analysis and Water Resources (credit units: 15)
Management: measurement and estimation of hydrological processes, Human interventions in terrestrial water cycles
Lectures: 3 hours per week
Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

EAS323 - Applied Meteorology (credit units: 15)
Weather forecasting, Severe weather hazards, Problems, impact and assessment
Lectures: 3 hours per week
Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)
EAS324 - Project Management (credit units: 8)
Principles of project management

ENV211 - Introduction to Environmental Sciences (credit units: 15)
Scientific principles and concepts of environmental sciences related to ecosystems, climate and soils
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

ENV212 - Global Environmental Problems (credit units: 15)
Environmental problems, their causes and history of resource utilisation and conservation
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

ENV321 - Energy, Health and Pollution (credits: 15)
Energy, Health and Pollution risks related to renewable and non-renewable resources
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

ENV322 - Applied Resource Studies (credit units: 15)
Natural resource destructive with specific reference to South Africa
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

ENV323 - Environment and the Society (credit units: 15)
Environmental dynamics and the relationship between economics, politics, ethics and sustainable development
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

GEO111 - World Human Environmental Systems (credit units: 15)
Theoretical and practical studies in the spatial structure, pattern, distribution and development of economic, population and settlement activities within the man-made environment
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)
GEO121 - World Physical Environmental Systems (credit units: 15)
Comprehensive theoretical and practical study of the physical processes involved in features of the physical environment
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

GEO211 - Geomorphology (credit units: 8)
Soil formation and the drainage basin from a geomorphologic perspective. Application of quantitative techniques to problem solving
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

GEO212 - Spatial Analysis (credit units: 8)
Processes and principals in geographical analysis, location theories and land-use, Spatial structure, interaction and diffusion including quantitative techniques towards applied problem solving
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

GEO221 - Climatology (credit units: 8)
Basic elements of climate, atmospheric conditions and its application to southern Africa. Special attention to the stratification of the atmosphere and its role in maintaining the earth’s climate. Application of basic qualitative and quantitative techniques in the measurement of climatic elements and daily weather patterns
Lectures: 3 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

GEO321 - Resource Studies (credit units: 15)
Inter-disciplinary study of natural resources within the diversity of the earth’s ecosystem, including an environmental education training course
Lectures: 3 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

GEO322 - Periglacial Geomorphology
Geological features that originate under the predominant influence of frost action
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

RES325 - Internship (credit units: 8)
Six week attachment to a relevant career training programme

MAT111 - Fundamentals of Discrete Mathematics (credit units: 15)
Elementary logic: propositions, truth values, tautologies, quantifiers, methods of proofs, Elementary set theory: finite and infinite sets, empty set, power set, Venn diagram, operations on sets, equivalence relations, Mathematical induction, Permutation, Combination, Binomial theorem, Binary operations, Groups, Construction of Z and Q, Properties of R.
Lectures: 4 hours per week
Tutorials/Practicals: 4 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT112 - Fundamentals of Analysis (credit units: 15)
Real numbers, elementary function, sequences, idea of limit, techniques of finding limits, continuous functions, min and max investigation of functions, graph sketching, tangents, differentiation, area under graph, integration.
Lectures: 4 hours per week
Tutorials/Practicals: 4 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT121 - Fundamentals of Linear Algebra (credit units: 15)
Systems of linear equations, Gauss Jordan, Euclidean plane and Euclidean space and vectors in them, Points and lines in the plane, lines and planes in the space, Linear transformation in the plane, Simplex method, scalar product, Vector product, Complex numbers.
Lectures: 4 hours per week
Tutorials/Practicals: 4 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT122 - Analysis (credit units: 15)
Definition of limit and continuity, Convergence and divergence of sequences and series, Definition of derivative and integral, Differentiation and integration rules, Fundamental theorem of calculus, Mean value theorem and maxima, minima, Taylor expression, Introduction to higher functions.
Lectures: 4 hours per week
Tutorials/Practicals: 4 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT211 - Linear Algebra (credit units: 20)
Vector spaces, Homomorphism, Eigenvalues, Similarity transformations, Bilinear and quadratic forms, Orthogonal and unitary transformations, Normal matrices, Quadratic curves
Lectures: 4 hours per week
Tutorials/Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)
MAT212 - Analysis in Higher Dimension (credit units: 20)
Partial derivative, Multiple integral, Total differential, Surface and volume integral, Taylor in \mathbb{R}^n (Taylor expansion in n-dimensions), Directional derivative, Implicit functions, Extremas, Lagrange multiplier

Lectures: 4 hours per week

Tutorials/Practicals: 2 hours per week

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT221 - Numerical Methods (credit units: 20)
Fix points, Regula-Falsi, Newton, Numerical differentiation and integration, Approximation, Interpolation, Direct and iterative methods of solution of linear systems, ODE's and Runge-Kutta

Lectures: 4 hours per week

Tutorials/Practicals: 2 hours per week

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT222 - Discrete Mathematics (credit units: 20)
Algorithms, Recurrence relations, Equipotent sets, Order, Cardinal and ordinal numbers, Axiom of choice and Zorn's Lemma, Paradoxes, Elementary number theory, Euclid's algorithm, g.c.d, l.c.m, Primes, Fundamental theorem of arithmetic

Lectures: 4 hours per week

Tutorials/Practicals: 2 hours per week

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT311 - Abstract Analysis (credit units: 20)
Real numbers, Completeness axiom, Norms, Metrics, Topology, Compactness, Connectedness, Uniform continuity and convergence, Fix points, Sequential compactness and totally boundedness, Differentiation in normed spaces, Linear operators, Finite dimensional normed vector spaces

Lectures: 4 hours per week

Tutorials/Practicals: 2 hours per week

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT312 - Abstract Algebra (credit units: 20)
Groups, Euler-Lagrange, Cayley, Rings, Ideals, Integral domains, Fields, Field extension, Polynomial rings, Kronecker, Finite fields

Lectures: 4 hours per week

Tutorials/Practicals: 2 hours per week

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

MAT321 - Complex Analysis (credit units: 20)
The complex plane, subsets thereof, Holomorphic functions, Complex power series, Cauchy's theorem, Paths, Integration along paths, Singularity, Laurent series, Residue

Lectures: 4 hours per week

Tutorials/Practicals: 2 hours per week

Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)
MAT322 - Advanced Discrete Mathematics (credit units: 20)
Graph theory, Trees, Networks, Boolean Algebra and combinatorial circuits, Automata, Grammars and language
Lectures: 4 hours per week
Tutorials/Practicals: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

PHY111 - Mechanics (credit units: 5)
Motion of particles in one and two-dimensional space, Vectors, Circular motion, Newton’s Laws of motion, Work and energy, Elastic and inelastic collisions.
Lectures: 2 hours per week
Tutorials: 1 hour every fortnight
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

PHY112 - Properties of Matter (credit units: 5)
Molecular interaction, Hooke’s Law, Stress and strain, Hydrostatics, Hydrodynamics, Temperature, Heat.
Lectures: 2 hours per week
Tutorials: 1 hour every fortnight
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

PHY113 - Experimental Physics 1 (credit units: 5)
Experimental work related to the contents of PHY111 and PHY112.
Practicals: 3 hours per week
Assessment: Continuous assessment of laboratory reports (50%) and final practical examination (50%)

PHY121 - Electro-Magnetism (credit units: 5)
Electric charges, Coulomb’s Law, Electric fields, Gauss’ Law, dc electricity, circuit diagrams, capacitors, magnetic fields, magnetic flux, magnetic induction.
Lectures: 2 hours per week
Tutorials: 1 hour every fortnight
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

PHY122 - Optics and Introductory Modern Physics (credit units: 5)
Reflection and Refraction of light, Optical instruments, Introductory Modern Physics.
Lectures: 2 hours per week
Tutorials: 1 hour every fortnight
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

PHY123 - Experimental Physics 2 (credit units: 5)
Experimental work related to the contents of PHY121 and PHY122.
Practicals: 3 hours per week
Assessment: Continuous assessment of laboratory reports (50%) and final practical examination (50%)

- 81 -
PHY211 - Classical Mechanics (credit units: 5)
Vector algebra, Central conservation force, coordinate systems, linear momentum, angular momentum and torque, work and energy, vector differential calculus, relativistic momentum and energy
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY212 - Electromagnetism (credit units: 5)
Electromagnetic induction, Biot-Savart Law, Faraday’s Law, Vector integral calculus, div and curl of electric fields, Electrostatic potential, Work and energy, div and curl of magnetic fields
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY213 - Atomic Physics (credit units: 5)
Atomic view of matter, charge and radiation, atomic models, atomic spectra, vector model of an atom
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY214 - Experimental Physics 3 (credit units: 5)
Experimental work related to the contents of PHY211, PHY212 and PHY213
Practicals: 5 hours per week
Assessment: Continuous assessment of laboratory reports (50%) and final practical examination (50%)

PHY221 - Thermodynamics (credit units: 5)
Basic concepts of thermodynamics and applications, first law; second law; first and second law combined, applications of thermodynamics to simple system
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY222 - Wave theory (credit units: 5)
Mechanical waves; electro-magnetic waves; matter waves.
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY223 - Nuclear Physics (credit units: 5)
Nuclear mass theory, nuclear decay modes and radioactivity, interaction of particles with nuclei, nuclear detectors and accelerators, nuclear reactions, nuclear structure
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

- 82 -
PHY224 - Experimental Physics 4 (credit units: 5)
Experimental work related to the contents of PHY221, PHY222 and PHY223
Practicals: 3 hours per week
Assessment: Continuous assessment of laboratory reports (50%) and final practical examination (50%)

PHY311 - Relativity (credit units: 8)
The speed of light and ether, Einstein’s principle of relativity, the Lorentz transformation, Galilean transformation, time dilation, the combination of velocities, the equivalence of energy and mass, relativistic energy and momentum
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY312 - Solid State Physics (credit units: 8)
Crystal structure, crystal binding and reciprocal lattices, phonons and lattice vibrations, thermal properties of insulators, free-electron fermi gas, energy bands in solids, semiconductors
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours

PHY313 - Electrodynamics (credit units: 8)
Electromotive force, Faraday’s law, Maxwell’s equations, ac electricity.
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY314 - Experimental Physics 5 (credit units: 5)
Experimental work related to the contents of PHY311, PHY312 and PHY313
Practicals: 5 hours per week
Assessment: Continuous assessment of laboratory reports (50%) and final practical examination (50%)

PHY321 - Statistical Thermo-dynamics (credit units: 8)
Review of kinetic theory, introduction to statistical methods, intermolecular forces, statistical thermodynamics, applications to gases, quantum statistics and its application
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY322 - Quantum Physics (credit units: 8)
Fundamental concepts of quantum mechanics, Schrodinger equation, one electron atoms, Quantum oscillator, magnetic dipoles and spin, multi-electron atoms
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)
PHY323 - Particle Physics (credit units: 8)
Particle production, identification, detection and annihilation, g-absorption/production, photoelectric effect, Bremsstrahlung, Compton effect, Elementary particles
Lectures: 2 hours per week
Tutorials: 1 hour per week
Assessment: Continuous assessment through assignments and tests (50%) and examination of one paper of three hours (50%)

PHY324 - Experimental Physics 6 (credit units: 5)
Experimental work related to the contents of PHY321, PHY322 and PHY323
Practicals: 5 hours per week
Assessment: Continuous assessment of laboratory reports (50%) and final practical examination (50%)

STA111 - Introduction to Statistical Methods (credit units: 15)
The Nature of Statistics; Prescribing data; Probability concepts; Probability distributions; Confidence intervals; Hypothesis testing; Testing for differences; Practical applications.
Lectures: 3 hours per week
Tutorials: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

STA121 - Introduction to Statistical Methods (credit units: 15)
Correlation and regression; F tests; sampling and simulation; quality control; Practical applications.
Lectures: 3 hours per week
Tutorials: 2 hours per week
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of two hours (50%)

ZOO211 - Invertebrate functional biology (credit units: 10)
Feeding; Internal transport; Gaseous exchange; Osmo regulation; Reproduction.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

ZOO212 - Systems ecology (credit units: 10)
Classification of freshwater organisms; Stratification of dams and lakes; Lentic communities; Lotic communities; Adaptations; Ocean currents and coastal regions; The inter-tidal zone; tides and tidal cycles; Zonation; Rocky and sandy shore food webs; Beach classification and diversity; Adaptations.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

ZOO221 - Introductory parasitology and helminthology (credit units: 10)
Parasitological terminology; Epidemiology of medically important helminthic infections; Life cycles, symptomatology, diagnosis, treatment and control of nematodes and trematodes of medical importance.
Lectures: 2 hours per week
Practicals: 4 hours per week
ZOO222 - Applied Entomology (credit units: 10)
Taxonomy; Insect morphology and physiology; Agricultural entomology; Medical entomology; Pest/vector control; Bionomics and control of insect pests/vectors in South Africa
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

ZOO311 - Vertebrate functional biology (credit units: 15)
Heart and blood vascular systems; Reproductive systems; Reptile reproductive physiology; Osmoregulation and nitrogen excretion.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

ZOO312 - Vertebrate systematics and population genetics (credit units: 15)
Introductory systematics; Species concepts; Introductory population genetics and statistics.
Lectures: 2 hours per week
Practicals: 2 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)

ZOO321 - Medical parasitology (credit units: 15)
Research techniques.
Lectures: 2 hours per week
Practicals: 4 hours per week

ZOO322 - Immunology 1 (credit units: 15)
Innate and specific immunity; Cell mediated and humoral immunity; Introduction to serological testing; Identification of antigens for vaccine preparation.
Lectures: 2 hours per week
Practicals: 4 hours per week
Calculation of semester mark: Theory 60%, Practicals 40%
Assessment: Continuous (formative) assessment through assignments and tests (50%) and examination (summative assessment) by means of one paper of three hours (50%)